Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Top‐Down Fabrication of Ordered Nanophotonic Structures for Biomedical Applications

      1 , 1 , 1 , 1 , 1
      Advanced Materials Interfaces
      Wiley

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The size, distribution, and specific shape of ordered nanophotonic structures are crucial for their biomedical applications. Bottom‐up approaches such as self‐assembly, emulsification, and precipitation are commonly fabricated nanophotonic structures, which often lack control of nanophotonic structures morphologies and monodispersed sizes. On the contrary, top‐down nanofabrication techniques offer the advantages of high fidelity and high controllability and are employed in the fabrication of nanophotonic structures. This review focuses on top‐down nanofabrication techniques to fabricate ordered nanophotonic structures and their biomedical applications. Several top‐down approaches used in the semiconductor industry and other fields requiring micro‐ and nanopatterns are used, including electron beam lithography/ion beam lithography, photolithography, interference lithography, nanoimprint lithography, nanosphere lithography, nanotransfer lithography, and nano‐electrodeposition. Various current and emerging biomedical applications of the ordered nanophotonic structures are also covered: i) surface‐enhanced Raman scattering, ii) plasmonics, including surface plasmon resonance and localized surface plasmon resonance, and iii) fluorescence enhancement. Finally, a future perspective of nanophotonic structures fabricated by top‐down techniques in biomedical applications is also summarized.

          Related collections

          Most cited references187

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems

          Lipid-based drug delivery systems, or lipidic carriers, are being extensively employed to enhance the bioavailability of poorly-soluble drugs. They have the ability to incorporate both lipophilic and hydrophilic molecules and protecting them against degradation in vitro and in vivo. There is a number of physical attributes of lipid-based nanocarriers that determine their safety, stability, efficacy, as well as their in vitro and in vivo behaviour. These include average particle size/diameter and the polydispersity index (PDI), which is an indication of their quality with respect to the size distribution. The suitability of nanocarrier formulations for a particular route of drug administration depends on their average diameter, PDI and size stability, among other parameters. Controlling and validating these parameters are of key importance for the effective clinical applications of nanocarrier formulations. This review highlights the significance of size and PDI in the successful design, formulation and development of nanosystems for pharmaceutical, nutraceutical and other applications. Liposomes, nanoliposomes, vesicular phospholipid gels, solid lipid nanoparticles, transfersomes and tocosomes are presented as frequently-used lipidic drug carriers. The advantages and limitations of a range of available analytical techniques used to characterize lipidic nanocarrier formulations are also covered.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.

            The selection of nanoparticles for achieving efficient contrast for biological and cell imaging applications, as well as for photothermal therapeutic applications, is based on the optical properties of the nanoparticles. We use Mie theory and discrete dipole approximation method to calculate absorption and scattering efficiencies and optical resonance wavelengths for three commonly used classes of nanoparticles: gold nanospheres, silica-gold nanoshells, and gold nanorods. The calculated spectra clearly reflect the well-known dependence of nanoparticle optical properties viz. the resonance wavelength, the extinction cross-section, and the ratio of scattering to absorption, on the nanoparticle dimensions. A systematic quantitative study of the various trends is presented. By increasing the size of gold nanospheres from 20 to 80 nm, the magnitude of extinction as well as the relative contribution of scattering to the extinction rapidly increases. Gold nanospheres in the size range commonly employed ( approximately 40 nm) show an absorption cross-section 5 orders higher than conventional absorbing dyes, while the magnitude of light scattering by 80-nm gold nanospheres is 5 orders higher than the light emission from strongly fluorescing dyes. The variation in the plasmon wavelength maximum of nanospheres, i.e., from approximately 520 to 550 nm, is however too limited to be useful for in vivo applications. Gold nanoshells are found to have optical cross-sections comparable to and even higher than the nanospheres. Additionally, their optical resonances lie favorably in the near-infrared region. The resonance wavelength can be rapidly increased by either increasing the total nanoshell size or increasing the ratio of the core-to-shell radius. The total extinction of nanoshells shows a linear dependence on their total size, however, it is independent of the core/shell radius ratio. The relative scattering contribution to the extinction can be rapidly increased by increasing the nanoshell size or decreasing the ratio of the core/shell radius. Gold nanorods show optical cross-sections comparable to nanospheres and nanoshells, however, at much smaller effective size. Their optical resonance can be linearly tuned across the near-infrared region by changing either the effective size or the aspect ratio of the nanorods. The total extinction as well as the relative scattering contribution increases rapidly with the effective size, however, they are independent of the aspect ratio. To compare the effectiveness of nanoparticles of different sizes for real biomedical applications, size-normalized optical cross-sections or per micron coefficients are calculated. Gold nanorods show per micron absorption and scattering coefficients that are an order of magnitude higher than those for nanoshells and nanospheres. While nanorods with a higher aspect ratio along with a smaller effective radius are the best photoabsorbing nanoparticles, the highest scattering contrast for imaging applications is obtained from nanorods of high aspect ratio with a larger effective radius.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Surface plasmon resonance sensors for detection of chemical and biological species.

                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Materials Interfaces
                Adv Materials Inter
                Wiley
                2196-7350
                2196-7350
                February 2024
                December 09 2023
                February 2024
                : 11
                : 5
                Affiliations
                [1 ] School of Biomedical Engineering Sun Yat‐sen University Shenzhen 518107 China
                Article
                10.1002/admi.202300856
                284dea67-b92c-4d35-b883-46ceaf236add
                © 2024

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article