4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multifactorial resistance mechanisms associated with resistance to ceftazidime-avibactam in clinical Pseudomonas aeruginosa isolates from Switzerland

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Increasing reports of multidrug resistance (MDR) in clinical Pseudomonas aeruginosa have led to a necessity for new antimicrobials. Ceftazidime-avibactam (CZA) is indicated for use against MDR P. aeruginosa across a broad range of infection types and particularly those that are carbapenem resistant. This study sought to determine the molecular mechanisms of CZA and imipenem (IPM)-resistance in clinical P. aeruginosa isolates obtained from Swiss hospitals.

          Methods

          Clinical P. aeruginosa isolates were obtained from inpatients in three hospitals in Switzerland. Susceptibility was determined by either antibiotic disc testing or broth microdilution according to EUCAST methodology. AmpC activity was determined using cloxacillin and efflux activity was determined using phenylalanine-arginine β-naphthylamide, in agar plates. Whole Genome Sequencing was performed on 18 clinical isolates. Sequence types (STs) and resistance genes were ascertained using the Centre for Genomic Epidemiology platform. Genes of interest were extracted from sequenced isolates and compared to reference strain P. aeruginosa PAO1.

          Results

          Sixteen different STs were identified amongst the 18 isolates in this study indicating a high degree of genomic diversity. No carbapenemases were detected but one isolate did harbor the ESBL bla PER-1. Eight isolates were CZA-resistant with MICs ranging from 16-64 mg/L, and the remaining ten isolates had either low/wildtype MICs (n=6; 1-2 mg/L) or elevated, but still susceptible, MICs (n=4; 4-8 mg/L). Ten isolates were IPM-resistant, seven of which had mutations resulting in truncations of OprD, and the remaining nine IPM-susceptible isolates had intact oprD genes. Within CZA-R isolates, and those with reduced susceptibility, mutations resulting in ampC derepression, OprD loss, mexAB overexpression and ESBL ( bla PER-1) carriage were observed in various combinations and one harbored a truncation of the PBP4 dacB gene. Within the six isolates with wildtype-resistance levels, five had no mutations that would affect any antimicrobial resistance (AMR) genes of interest when compared to PAO1.

          Conclusion

          This preliminary study highlights that CZA-resistance in P. aeruginosa is multifactorial and could be caused by the interplay between different resistance mechanisms including ESBL carriage, increased efflux, loss of permeability and derepression of its intrinsic ampC.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Trimmomatic: a flexible trimmer for Illumina sequence data

          Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic Contact: usadel@bio1.rwth-aachen.de Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prokka: rapid prokaryotic genome annotation.

            T Seemann (2014)
            The multiplex capability and high yield of current day DNA-sequencing instruments has made bacterial whole genome sequencing a routine affair. The subsequent de novo assembly of reads into contigs has been well addressed. The final step of annotating all relevant genomic features on those contigs can be achieved slowly using existing web- and email-based systems, but these are not applicable for sensitive data or integrating into computational pipelines. Here we introduce Prokka, a command line software tool to fully annotate a draft bacterial genome in about 10 min on a typical desktop computer. It produces standards-compliant output files for further analysis or viewing in genome browsers. Prokka is implemented in Perl and is freely available under an open source GPLv2 license from http://vicbioinformatics.com/. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Identification of acquired antimicrobial resistance genes

              Objectives Identification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic laboratories and is anticipated to substitute traditional methods for resistance gene identification. Thus, the current challenge is to extract the relevant information from the large amount of generated data. Methods We developed a web-based method, ResFinder that uses BLAST for identification of acquired antimicrobial resistance genes in whole-genome data. As input, the method can use both pre-assembled, complete or partial genomes, and short sequence reads from four different sequencing platforms. The method was evaluated on 1862 GenBank files containing 1411 different resistance genes, as well as on 23 de- novo-sequenced isolates. Results When testing the 1862 GenBank files, the method identified the resistance genes with an ID = 100% (100% identity) to the genes in ResFinder. Agreement between in silico predictions and phenotypic testing was found when the method was further tested on 23 isolates of five different bacterial species, with available phenotypes. Furthermore, ResFinder was evaluated on WGS chromosomes and plasmids of 30 isolates. Seven of these isolates were annotated to have antimicrobial resistance, and in all cases, annotations were compatible with the ResFinder results. Conclusions A web server providing a convenient way of identifying acquired antimicrobial resistance genes in completely sequenced isolates was created. ResFinder can be accessed at www.genomicepidemiology.org. ResFinder will continuously be updated as new resistance genes are identified.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Infect. Microbiol.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                2235-2988
                25 April 2023
                2023
                : 13
                : 1098944
                Affiliations
                [1] 1 Medical Research Center, Kantonspital St. Gallen , St. Gallen, Switzerland
                [2] 2 Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital St. Gallen , St. Gallen, Switzerland
                [3] 3 Clinic of Infectious Diseases and Hospital Hygiene, Kantonsspital Aarau , Aarau, Switzerland
                [4] 4 Department of Microbiology, Institute for Laboratory Medicine, Kantonsspital Aarau , Aarau, Switzerland
                [5] 5 Institute of Medical Microbiology, University of Zurich , Zurich, Switzerland
                [6] 6 Division of Human Microbiology, Centre for Laboratory Medicine , St. Gallen, Switzerland
                [7] 7 Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg , Fribourg, Switzerland
                Author notes

                Edited by: Piotr Majewski, Medical University of Bialystok, Poland

                Reviewed by: Pablo Laborda, National Center for Biotechnology (CSIC), Spain; Roger M. Echols, Infectious Disease Drug Development Consulting, LLC, United States

                *Correspondence: Baharak Babouee Flury, Baharak.baboueeflury@ 123456kssg.ch

                This article was submitted to Bacteria and Host, a section of the journal Frontiers in Cellular and Infection Microbiology

                Article
                10.3389/fcimb.2023.1098944
                10166991
                37180441
                28229d03-1a7c-4a2e-9195-e18e19fdb709
                Copyright © 2023 Babouee Flury, Bösch, Gisler, Egli, Seiffert, Nolte and Findlay

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 November 2022
                : 05 April 2023
                Page count
                Figures: 0, Tables: 1, Equations: 0, References: 29, Pages: 6, Words: 3083
                Funding
                BB has been funded by the research grant of Kantonsspital St. Gallen.
                Categories
                Cellular and Infection Microbiology
                Original Research

                Infectious disease & Microbiology
                pseudomonas aeruginosa,ceftazidime-avibactam (cza),molecular resistance mechanisms,imipenem,whole genome sequencing (wgs)

                Comments

                Comment on this article