47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          HER2-positive breast tumors are associated with a high risk of brain relapse. HER3 is thought to be an indispensible signaling substrate for HER2 (encoded by ERBB2) and is induced in breast cancer-brain metastases, though the molecular mechanisms by which this oncogenic dimer promotes the development of brain metastases are still elusive. We studied the effects of the HER3-HER2 ligand, heregulin (neuregulin-1, broadly expressed in the brain), on luminal breast cancer cell lines in vitro. Treatment of SKBr3 ( ERBB2-amplified), MDA-MB-361 ( ERBB2-amplified, metastatic brain tumor-derived) and MCF7 (HER2-positive, not ERBB2-amplified) cells with exogenous heregulin increased proliferation and adhesive potential, concomitant with induction of cyclin D1 and ICAM-1, and suppression of p27. All three cell lines invaded through matrigel toward a heregulin chemotactic signal in transwell experiments, associated with activation of extracellular cathepsin B and matrix metalloproteinase-9 (MMP-9). Moreover, heregulin induced breast cancer cell transmigration across a tight barrier of primary human brain microvascular endothelia. This was dependent on the activity of HER2, HER3 and MMPs, and was completely abrogated by combination HER2-HER3 blockade using Herceptin ® and the humanized HER3 monoclonal antibody, EV20. Collectively these data suggest mechanisms by which the HER3-HER2 dimer promotes development of metastatic tumors in the heregulin-rich brain microenvironment.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System.

          Population-based estimates of the incidence of brain metastases are not generally available. The purpose of this study was to calculate population-based incidence proportions (IPs) of brain metastases from single primary lung, melanoma, breast, renal, or colorectal cancer. Patients diagnosed with single primary lung, melanoma, breast, renal, or colorectal cancer (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System (MDCSS) were used for analysis. IP of brain metastases by primary site and variable of interest (race, sex, age at diagnosis of primary cancer, and Surveillance, Epidemiology, and End Results [SEER] stage of primary cancer) was calculated with 95% CIs. Total IP percentage (IP%) of brain metastases was 9.6% for all primary sites combined, and highest for lung (19.9%), followed by melanoma (6.9%), renal (6.5%), breast (5.1%), and colorectal (1.8%) cancers. Racial differences were seen with African Americans demonstrating higher IP% of brain metastases compared with other racial groups for most primary sites. IP% was significantly higher for female patients with lung cancer, and significantly higher for male patients with melanoma. The highest IP% of brain metastases occurred at different ages at diagnoses: age 40 to 49 years for primary lung cancer; age 50 to 59 years for primary melanoma, renal, or colorectal cancers; and age 20 to 39 for primary breast cancer. IP% significantly increased as SEER stage of primary cancer advanced for all primary sites. Total IP% of brain metastases was lower than previously reported, and it varied by primary site, race, sex, age at diagnosis of primary cancer, and SEER stage of primary cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Serpins promote cancer cell survival and vascular co-option in brain metastasis.

            Brain metastasis is an ominous complication of cancer, yet most cancer cells that infiltrate the brain die of unknown causes. Here, we identify plasmin from the reactive brain stroma as a defense against metastatic invasion, and plasminogen activator (PA) inhibitory serpins in cancer cells as a shield against this defense. Plasmin suppresses brain metastasis in two ways: by converting membrane-bound astrocytic FasL into a paracrine death signal for cancer cells, and by inactivating the axon pathfinding molecule L1CAM, which metastatic cells express for spreading along brain capillaries and for metastatic outgrowth. Brain metastatic cells from lung cancer and breast cancer express high levels of anti-PA serpins, including neuroserpin and serpin B2, to prevent plasmin generation and its metastasis-suppressive effects. By protecting cancer cells from death signals and fostering vascular co-option, anti-PA serpins provide a unifying mechanism for the initiation of brain metastasis in lung and breast cancers. Copyright © 2014 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Brain metastases: epidemiology and pathophysiology.

              Metastases are the most common tumors of the central nervous system (CNS), but cancer databases are often incomplete leading to underestimation of the incidence of even symptomatic brain metastases. Brain imaging studies are not routinely performed on neurologically asymptomatic cancer patients and autopsy studies are outdated. Furthermore, while incidence rates for cancers are stable and mortality is decreasing due to earlier detection and better therapy, the incidence of brain metastases appears to be increasing. The pathophysiology of brain metastases is a complex multistage process, mediated by molecular mechanisms; from the primary organ, cancer cells must transform, grow and be transported to the CNS where they can lay dormant for various lengths of time before invading and growing further. Understanding the pathophysiology of brain metastases is of great importance, because it may lead to the development of more efficient therapies to combat brain tumor growth or to possibly make the CNS an undesirable environment for tumor progression.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                February 2015
                19 February 2015
                : 6
                : 6
                : 3932-3946
                Affiliations
                1 University of Queensland, UQ Center for Clinical Research, Herston, QLD, Australia
                2 QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
                3 Mediapharma s.r.l., Chieti, Italy
                4 Department of Cancer Research, Max Delbruck Center for Molecular Medicine, Berlin, Germany
                5 Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
                6 Pathology Queensland, The Royal Brisbane & Women's Hospital, Herston, QLD Australia
                7 The University of Queensland School of Medicine, Herston, QLD Australia
                Author notes
                Correspondence to: Sunil R. Lakhani, s.lakhani@ 123456uq.edu.au
                Article
                10.18632/oncotarget.2846
                4414164
                25668816
                27f92ab0-6111-4464-a5e9-72cc3a662577
                Copyright: © 2015 Momeny et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 July 2014
                : 5 December 2014
                Categories
                Research Paper

                Oncology & Radiotherapy
                heregulin,her2,her3,blood-brain-barrier,matrix metalloproteinase,breast cancer-brain metastases

                Comments

                Comment on this article