33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Daxx, a Novel Fas-Binding Protein That Activates JNK and Apoptosis

      , , ,
      Cell
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Fas cell surface receptor induces apoptosis upon receptor oligomerization. We have identified a novel signaling protein, termed Daxx, that binds specifically to the Fas death domain. Overexpression of Daxx enhances Fas-mediated apoptosis and activates the Jun N-terminal kinase (JNK) pathway. A C-terminal portion of Daxx interacts with the Fas death domain, while a different region activates both JNK and apoptosis. The Fas-binding domain of Daxx is a dominant-negative inhibitor of both Fas-induced apoptosis and JNK activation, while the FADD death domain partially inhibits death but not JNK activation. The Daxx apoptotic pathway is sensitive to both Bcl-2 and dominant-negative JNK pathway components and acts cooperatively with the FADD pathway. Thus, Daxx and FADD define two distinct apoptotic pathways downstream of Fas.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis.

          Apoptosis plays an important role during neuronal development, and defects in apoptosis may underlie various neurodegenerative disorders. To characterize molecular mechanisms that regulate neuronal apoptosis, the contributions to cell death of mitogen-activated protein (MAP) kinase family members, including ERK (extracellular signal-regulated kinase), JNK (c-JUN NH2-terminal protein kinase), and p38, were examined after withdrawal of nerve growth factor (NGF) from rat PC-12 pheochromocytoma cells. NGF withdrawal led to sustained activation of the JNK and p38 enzymes and inhibition of ERKs. The effects of dominant-interfering or constitutively activated forms of various components of the JNK-p38 and ERK signaling pathways demonstrated that activation of JNK and p38 and concurrent inhibition of ERK are critical for induction of apoptosis in these cells. Therefore, the dynamic balance between growth factor-activated ERK and stress-activated JNK-p38 pathways may be important in determining whether a cell survives or undergoes apoptosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways.

            Mitogen-activated protein (MAP) kinase cascades are activated in response to various extracellular stimuli, including growth factors and environmental stresses. A MAP kinase kinase kinase (MAPKKK), termed ASK1, was identified that activated two different subgroups of MAP kinase kinases (MAPKK), SEK1 (or MKK4) and MKK3/MAPKK6 (or MKK6), which in turn activated stress-activated protein kinase (SAPK, also known as JNK; c-Jun amino-terminal kinase) and p38 subgroups of MAP kinases, respectively. Overexpression of ASK1 induced apoptotic cell death, and ASK1 was activated in cells treated with tumor necrosis factor-alpha (TNF-alpha). Moreover, TNF-alpha-induced apoptosis was inhibited by a catalytically inactive form of ASK1. ASK1 may be a key element in the mechanism of stress- and cytokine-induced apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis.

              Using the cytoplasmic domain of Fas in the yeast two-hybrid system, we have identified a novel interacting protein, FADD, which binds Fas and Fas-FD5, a mutant of Fas possessing enhanced killing activity, but not the functionally inactive mutants Fas-LPR and Fas-FD8. FADD contains a death domain homologous to the death domains of Fas and TNFR-1. A point mutation in FADD, analogous to the lpr mutation of Fas, abolishes its ability to bind Fas, suggesting a death domain to death domain interaction. Overexpression of FADD in MCF7 and BJAB cells induces apoptosis, which, like Fas-induced apoptosis, is blocked by CrmA, a specific inhibitor of the interleukin-1 beta-converting enzyme. These findings suggest that FADD may play an important role in the proximal signal transduction of Fas.
                Bookmark

                Author and article information

                Journal
                Cell
                Cell
                Elsevier BV
                00928674
                June 1997
                June 1997
                : 89
                : 7
                : 1067-1076
                Article
                10.1016/S0092-8674(00)80294-9
                2989411
                9215629
                27d3d01b-9865-4535-b635-d07316192177
                © 1997

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article