35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ochratoxin A: General Overview and Actual Molecular Status

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ochratoxin A (OTA) is a mycotoxin produced by several species of Aspergillus and Penicillium fungi that structurally consists of a para-chlorophenolic group containing a dihydroisocoumarin moiety that is amide-linked to L-phenylalanine. OTA is detected worldwide in various food and feed sources. Studies show that this molecule can have several toxicological effects such as nephrotoxic, hepatotoxic, neurotoxic, teratogenic and immunotoxic. A role in the etiology of Balkan endemic nephropathy and its association to urinary tract tumors has been also proved. In this review, we will explore the general aspect of OTA: physico-chemical properties, toxicological profile, OTA producing fungi, contaminated food, regulation, legislation and analytical methods. Due to lack of sufficient information related to the molecular background, this paper will discuss in detail the recent advances in molecular biology of OTA biosynthesis, based on information and on new data about identification and characterization of ochratoxin biosynthetic genes in both Penicillium and Aspergillus species. This review will also cover the development of the molecular methods for the detection and quantification of OTA producing fungi in various foodstuffs.

          Related collections

          Most cited references191

          • Record: found
          • Abstract: found
          • Article: not found

          AFLP: a new technique for DNA fingerprinting.

          A novel DNA fingerprinting technique called AFLP is described. The AFLP technique is based on the selective PCR amplification of restriction fragments from a total digest of genomic DNA. The technique involves three steps: (i) restriction of the DNA and ligation of oligonucleotide adapters, (ii) selective amplification of sets of restriction fragments, and (iii) gel analysis of the amplified fragments. PCR amplification of restriction fragments is achieved by using the adapter and restriction site sequence as target sites for primer annealing. The selective amplification is achieved by the use of primers that extend into the restriction fragments, amplifying only those fragments in which the primer extensions match the nucleotides flanking the restriction sites. Using this method, sets of restriction fragments may be visualized by PCR without knowledge of nucleotide sequence. The method allows the specific co-amplification of high numbers of restriction fragments. The number of fragments that can be analyzed simultaneously, however, is dependent on the resolution of the detection system. Typically 50-100 restriction fragments are amplified and detected on denaturing polyacrylamide gels. The AFLP technique provides a novel and very powerful DNA fingerprinting technique for DNAs of any origin or complexity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase.

            A thermostable DNA polymerase was used in an in vitro DNA amplification procedure, the polymerase chain reaction. The enzyme, isolated from Thermus aquaticus, greatly simplifies the procedure and, by enabling the amplification reaction to be performed at higher temperatures, significantly improves the specificity, yield, sensitivity, and length of products that can be amplified. Single-copy genomic sequences were amplified by a factor of more than 10 million with very high specificity, and DNA segments up to 2000 base pairs were readily amplified. In addition, the method was used to amplify and detect a target DNA molecule present only once in a sample of 10(5) cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of secondary metabolism in filamentous fungi.

              Fungal secondary metabolites are of intense interest to humankind due to their pharmaceutical (antibiotics) and/or toxic (mycotoxins) properties. In the past decade, tremendous progress has been made in understanding the genes that are associated with production of various fungal secondary metabolites. Moreover, the regulatory mechanisms controlling biosynthesis of diverse groups of secondary metabolites have been unveiled. In this review, we present the current understanding of the genetic regulation of secondary metabolism from clustering of biosynthetic genes to global regulators balancing growth, sporulation, and secondary metabolite production in selected fungi with emphasis on regulation of metabolites of agricultural concern. Particularly, the roles of G protein signaling components and developmental regulators in the mycotoxin sterigmatocystin biosynthesis in the model fungus Aspergillus nidulans are discussed in depth.
                Bookmark

                Author and article information

                Journal
                Toxins (Basel)
                toxins
                Toxins
                Molecular Diversity Preservation International
                2072-6651
                April 2010
                29 March 2010
                : 2
                : 4
                : 461-493
                Affiliations
                [1 ]Centre d’analyses et de recherches, Faculté des Sciences, Université Saint-Joseph, Beyrouth, Lebanon
                [2 ]Lebanese Atomic Energy Commission-CNRS, P.O. Box 11-8281, Riad El Solh, 1107 2260 Beirut, Lebanon
                Author notes
                [* ] Author to whom correspondence should be addressed; Email: a.atoui@ 123456cnrs.edu.lb ; Tel.: 00961 (1) 450 811; Fax: 00961 (1) 450 810.
                Article
                toxins-02-00461
                10.3390/toxins2040461
                3153212
                22069596
                27c54c15-72b1-4cd9-9105-c133de36dd1f
                © 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 24 January 2010
                : 05 March 2010
                : 08 March 2010
                Categories
                Review

                Molecular medicine
                ochratoxin a,toxicity,polyketide synthase gene,molecular biology,biosynthesis,detection,quantification

                Comments

                Comment on this article