1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Eco-evolutionary significance of domesticated retroelements in microbial genomes

      review-article
      1 , , 1 , 2 ,
      Mobile DNA
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since the first discovery of reverse transcriptase in bacteria, and later in archaea, bacterial and archaeal retroelements have been defined by their common enzyme that coordinates diverse functions. Yet, evolutionary refinement has produced distinct retroelements across the tree of microbial life that are perhaps best described in terms of their programmed RNA—a compact sequence that preserves core information for a sophisticated mechanism. From this perspective, reverse transcriptase has been selected as the modular tool for carrying out nature’s instructions in various RNA templates. Beneficial retroelements—those that can provide a fitness advantage to their host—evolved to their extant forms in a wide array of microorganisms and their viruses, spanning nearly all habitats. Within each specialized retroelement class, several universal features seem to be shared across diverse taxa, while specific functional and mechanistic insights are based on only a few model retroelement systems from clinical isolates. Currently, little is known about the diversity of cellular functions and ecological significance of retroelements across different biomes. With increasing availability of isolate, metagenome-assembled, and single-amplified genomes, the taxonomic and functional breadth of prokaryotic retroelements is coming into clearer view. This review explores the recently characterized classes of beneficial, yet accessory retroelements of bacteria and archaea. We describe how these specialized mechanisms exploit a form of fixed mobility, whereby the retroelements do not appear to proliferate selfishly throughout the genome. Moreover, we discuss computational approaches for systematic identification of retroelements from vast sequence repositories and highlight recent discoveries in terms of their apparent distribution and ecological significance in nature. Lastly, we present a new perspective on the eco-evolutionary significance of these genetic elements in marine bacteria and demonstrate approaches that enable the characterization of their environmental diversity through metagenomics.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s13100-022-00262-6.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation

          Background The Human Cell Atlas is a large international collaborative effort to map all cell types of the human body. Single-cell RNA sequencing can generate high-quality data for the delivery of such an atlas. However, delays between fresh sample collection and processing may lead to poor data and difficulties in experimental design. Results This study assesses the effect of cold storage on fresh healthy spleen, esophagus, and lung from ≥ 5 donors over 72 h. We collect 240,000 high-quality single-cell transcriptomes with detailed cell type annotations and whole genome sequences of donors, enabling future eQTL studies. Our data provide a valuable resource for the study of these 3 organs and will allow cross-organ comparison of cell types. We see little effect of cold ischemic time on cell yield, total number of reads per cell, and other quality control metrics in any of the tissues within the first 24 h. However, we observe a decrease in the proportions of lung T cells at 72 h, higher percentage of mitochondrial reads, and increased contamination by background ambient RNA reads in the 72-h samples in the spleen, which is cell type specific. Conclusions In conclusion, we present robust protocols for tissue preservation for up to 24 h prior to scRNA-seq analysis. This greatly facilitates the logistics of sample collection for Human Cell Atlas or clinical studies since it increases the time frames for sample processing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diverse enzymatic activities mediate antiviral immunity in prokaryotes

            Bacteria and archaea are frequently attacked by viruses and other mobile genetic elements and rely on dedicated antiviral defense systems, such as restriction endonucleases and CRISPR, to survive. The enormous diversity of viruses suggests that more types of defense systems exist than are currently known. By systematic defense gene prediction and heterologous reconstitution, here we discover 29 widespread antiviral gene cassettes, collectively present in 32% of all sequenced bacterial and archaeal genomes, that mediate protection against specific bacteriophages. These systems incorporate enzymatic activities not previously implicated in antiviral defense, including RNA editing and retron satellite DNA synthesis. In addition, we computationally predict a diverse set of other putative defense genes that remain to be characterized. These results highlight an immense array of molecular functions that microbes use against viruses.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations

                Bookmark

                Author and article information

                Contributors
                bgpaul@mbl.edu
                meren@mbl.edu
                Journal
                Mob DNA
                Mob DNA
                Mobile DNA
                BioMed Central (London )
                1759-8753
                23 February 2022
                23 February 2022
                2022
                : 13
                : 6
                Affiliations
                [1 ]GRID grid.144532.5, ISNI 000000012169920X, Marine Biological Laboratory, , Josephine Bay Paul Center, ; Woods Hole, MA USA
                [2 ]GRID grid.170205.1, ISNI 0000 0004 1936 7822, Department of Medicine, , University of Chicago, ; Chicago, IL USA
                Article
                262
                10.1186/s13100-022-00262-6
                8867640
                35197094
                27c053e4-6cf0-40b4-85d1-4532694c1d17
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 30 November 2021
                : 3 January 2022
                Categories
                Review
                Custom metadata
                © The Author(s) 2022

                Genetics
                Genetics

                Comments

                Comment on this article