14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Review of the Pharmacological Properties of Psoralen

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Psoralen is the principal bioactive component in the dried fruits of Cullen corylifolium (L.) Medik (syn. Psoralea corylifolia L), termed “Buguzhi” in traditional Chinese medicine (TCM). Recent studies have demonstrated that psoralen displays multiple bioactive properties, beneficial for the treatment of osteoporosis, tumors, viruses, bacteria, and inflammation. The present review focuses on the research evidence relating to the properties of psoralen gathered over recent years. Firstly, multiple studies have demonstrated that psoralen exerts strong anti-osteoporotic effects via regulation of osteoblast/osteoclast/chondrocyte differentiation or activation due to the participation in multiple molecular mechanisms of the wnt/β-catenin, bone morphogenetic protein (BMP), inositol-requiring enzyme 1 (IRE1)/apoptosis signaling kinase 1 (ASK1)/c-jun N-terminal kinase (JNK) and the Protein Kinase B(AKT)/activator protein-1 (AP-1) axis, and the expression of miR-488, peroxisome proliferators-activated receptor-gamma (PPARγ), and matrix metalloproteinases (MMPs). In addition, the antitumor properties of psoralen are associated with the induction of ER stress-related cell death via enhancement of PERK: Pancreatic Endoplasmic Reticulum Kinase (PERK)/activating transcription factor (ATF), 78kD glucose-regulated protein (GRP78)/C/EBP homologous protein (CHOP), and 94kD glucose-regulated protein (GRP94)/CHOP signaling, and inhibition of P-glycoprotein (P-gp) or ATPase that overcomes multidrug resistance. Furthermore, multiple articles have shown that the antibacterial, anti-inflammatory and neuroprotective effects of psoralen are a result of its interaction with viral polymerase (Pol), destroying the formation of biofilm, and regulating the activation of tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-β), interleukin 4/5/6/8/12/13 (IL-4/5/6/8/12/13), GATA-3, acetylcholinesterase (AChE), and the hypothalamic-pituitary-adrenal (HPA) axis. Finally, the toxic effects and mechanisms of action of psoralen have also been reviewed.

          Related collections

          Most cited references134

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-New Coronavirus (SARS-CoV-2): A Review and Perspective

          Currently, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, formerly known as 2019-nCoV, the causative pathogen of Coronavirus Disease 2019 (COVID-19)) has rapidly spread across China and around the world, causing an outbreak of acute infectious pneumonia. No specific anti-virus drugs or vaccines are available for the treatment of this sudden and lethal disease. The supportive care and non-specific treatment to ameliorate the symptoms of the patient are the only options currently. At the top of these conventional therapies, greater than 85% of SARS-CoV-2 infected patients in China are receiving Traditional Chinese Medicine (TCM) treatment. In this article, relevant published literatures are thoroughly reviewed and current applications of TCM in the treatment of COVID-19 patients are analyzed. Due to the homology in epidemiology, genomics, and pathogenesis of the SARS-CoV-2 and SARS-CoV, and the widely use of TCM in the treatment of SARS-CoV, the clinical evidence showing the beneficial effect of TCM in the treatment of patients with SARS coronaviral infections are discussed. Current experiment studies that provide an insight into the mechanism underlying the therapeutic effect of TCM, and those studies identified novel naturally occurring compounds with anti-coronaviral activity are also introduced.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antiviral Activities of Type I Interferons to SARS-CoV-2 Infection

            There is an urgent need to identify antivirals to curtail the COVID-19 pandemic. Herein, we report the sensitivity of SARS-CoV-2 to recombinant human interferons α and β (IFNα/β). Treatment with IFN-α or IFN-β at a concentration of 50 international units (IU) per milliliter reduces viral titers by 3.4 log or over 4 log, respectively, in Vero cells. The EC50 of IFN-α and IFN-β treatment is 1.35 IU/ml and 0.76 IU/ml, respectively, in Vero cells. These results suggest that SARS-CoV-2 is more sensitive than many other human pathogenic viruses, including SARS-CoV. Overall, our results demonstrate the potential efficacy of human Type I IFN in suppressing SARS-CoV-2 infection, a finding which could inform future treatment options for COVID-19.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab.

              Bone is a complex tissue that provides mechanical support for muscles and joints, protection for vital organs, a mineral reservoir that is essential for calcium homeostasis, and the environment and niches required for haematopoiesis. The regulation of bone mass in mammals is governed by a complex interplay between bone-forming cells termed osteoblasts and bone-resorbing cells termed osteoclasts, and is guided physiologically by a diverse set of hormones, cytokines and growth factors. The balance between these processes changes over time, causing an elevated risk of fractures with age. Osteoclasts may also be activated in the cancer setting, leading to bone pain, fracture, spinal cord compression and other significant morbidities. This Review chronicles the events that led to an increased understanding of bone resorption, the elucidation of the signalling pathway mediated by osteoprotegerin, receptor activator of NF-κB (RANK) and RANK ligand (RANKL) and its role in osteoclast biology, as well as the evolution of recombinant RANKL antagonists, which culminated in the development of the therapeutic RANKL-targeted antibody denosumab.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                04 September 2020
                2020
                : 11
                : 571535
                Affiliations
                [1] 1School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources , Chengdu, China
                [2] 2Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China, Pharmaceutical University , Nanjing, China
                Author notes

                Edited by: Chiranjib Chakraborty, Adamas University, India

                Reviewed by: Md. Areeful Haque, International Islamic University Chittagong, Bangladesh; Paulina Anna Miziak, Medical University of Lublin, Poland

                *Correspondence: Cheng Peng, pengchengchengdu@ 123456126.com ; Yuzhi Li, liyuzhi@ 123456cdutcm.edu.cn

                This article was submitted to Experimental Pharmacology and Drug Discovery, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2020.571535
                7500444
                33013413
                27bd3e8e-1be4-49b0-a5d4-d9fac424fa4c
                Copyright © 2020 Ren, Song, Tan, Guo, Wang, Liu, Cao, Li and Peng

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 June 2020
                : 19 August 2020
                Page count
                Figures: 4, Tables: 2, Equations: 0, References: 163, Pages: 18, Words: 9727
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 81973189
                Funded by: National Major Science and Technology Projects of China 10.13039/501100013076
                Award ID: 2017ZX09201001-008
                Categories
                Pharmacology
                Review

                Pharmacology & Pharmaceutical medicine
                psoralen,osteoporosis,tumor,inflammatory,severe acute respiratory syndrome coronavirus 2

                Comments

                Comment on this article