28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Parameter Estimation of Gravitational Waves from Precessing BH-NS Inspirals with higher harmonics

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Precessing black hole-neutron star (BH-NS) binaries produce a rich gravitational wave signal, encoding the binary's nature and inspiral kinematics. Using the lalinference\_mcmc Markov-chain Monte Carlo parameter estimation code, we use two fiducial examples to illustrate how the geometry and kinematics are encoded into the modulated gravitational wave signal, using coordinates well-adapted to precession. Even for precessing binaries, we show the performance of detailed parameter estimation can be estimated by "effective" estimates: comparisons of a prototype signal with its nearest neighbors, adopting a fixed sky location and idealized two-detector network. We use detailed and effective approaches to show higher harmonics provide nonzero but small local improvement when estimating the parameters of precessing BH-NS binaries. That said, we show higher harmonics can improve parameter estimation accuracy for precessing binaries ruling out approximately-degenerate source orientations. Our work illustrates quantities gravitational wave measurements can provide, such as reliable component masses and the precise orientation of a precessing short gamma ray burst progenitor relative to the line of sight. "Effective" estimates may provide a simple way to estimate trends in the performance of parameter estimation for generic precessing BH-NS binaries in next-generation detectors. For example, our results suggest that the orbital chirp rate, precession rate, and precession geometry are roughly-independent observables, defining natural variables to organize correlations in the high-dimensional BH-NS binary parameter space.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors

          The two-body dynamics in general relativity has been solved perturbatively using the post-Newtonian (PN) approximation. The evolution of the orbital phase and the emitted gravitational radiation are now known to a rather high order up to O(v^8), v being the characteristic velocity of the binary. The orbital evolution, however, cannot be specified uniquely due to the inherent freedom in the choice of parameter used in the PN expansion as well as the method pursued in solving the relevant differential equations. The goal of this paper is to determine the (dis)agreement between different PN waveform families in the context of initial and advanced gravitational-wave detectors. The waveforms employed in our analysis are those that are currently used by Initial LIGO/Virgo, that is the time-domain PN models TaylorT1, TaylorT2, TaylorT3, TaylorT4 and TaylorEt, the effective one-body (EOB) model, and the Fourier-domain representation TaylorF2. We examine the overlaps of these models with one another and with the prototype effective one-body model (calibrated to numerical relativity simulations, as currently used by initial LIGO) for a number of different binaries at 2PN, 3PN and 3.5PN orders to quantify their differences and to help us decide whether there exist preferred families that are the most appropriate as search templates. We conclude that as long as the total mass remains less than a certain upper limit M_crit, all template families at 3.5PN order (except TaylorT3 and TaylorEt) are equally good for the purpose of detection. The value of M_crit is found to be ~ 12M_Sun for Initial, Enhanced and Advanced LIGO. From a purely computational point of view we recommend that 3.5PN TaylorF2 be used below Mcrit and EOB calibrated to numerical relativity simulations be used for total binary mass M > Mcrit.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Comparison between numerical-relativity and post-Newtonian waveforms from spinning binaries: the orbital hang-up case

            We compare results from numerical simulations of spinning binaries in the "orbital hangup" case, where the binary completes at least nine orbits before merger, with post-Newtonian results using the approximants TaylorT1, T4 and Et. We find that, over the ten cycles before the gravitational-wave frequency reaches \(M\omega = 0.1\), the accumulated phase disagreement between NR and 2.5PN results is less than three radians, and is less than 2.5 radians when using 3.5PN results. The amplitude disagreement between NR and restricted PN results increases with the black holes' spin, from about 6% in the equal-mass case to 12% when the black holes' spins are \(S_i/M_i^2 = 0.85\). Finally, our results suggest that the merger waveform will play an important role in estimating the spin from such inspiral waveforms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Phasing of gravitational waves from inspiralling eccentric binaries

              We provide a method for analytically constructing high-accuracy templates for the gravitational wave signals emitted by compact binaries moving in inspiralling eccentric orbits. By contrast to the simpler problem of modeling the gravitational wave signals emitted by inspiralling {\it circular} orbits, which contain only two different time scales, namely those associated with the orbital motion and the radiation reaction, the case of {\it inspiralling eccentric} orbits involves {\it three different time scales}: orbital period, periastron precession and radiation-reaction time scales. By using an improved `method of variation of constants', we show how to combine these three time scales, without making the usual approximation of treating the radiative time scale as an adiabatic process. We explicitly implement our method at the 2.5PN post-Newtonian accuracy. Our final results can be viewed as computing new `post-adiabatic' short period contributions to the orbital phasing, or equivalently, new short-period contributions to the gravitational wave polarizations, \(h_{+,\times}\), that should be explicitly added to the `post-Newtonian' expansion for \(h_{+,\times}\), if one treats radiative effects on the orbital phasing of the latter in the usual adiabatic approximation. Our results should be of importance both for the LIGO/VIRGO/GEO network of ground based interferometric gravitational wave detectors (especially if Kozai oscillations turn out to be significant in globular cluster triplets), and for the future space-based interferometer LISA.
                Bookmark

                Author and article information

                Journal
                03 March 2014
                2014-04-11
                Article
                10.1103/PhysRevD.89.102005
                1403.0544
                27a7e86d-a3be-4025-82f8-5c80b05afb6e

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                LIGO DCC P1400020
                v2: typographical fixes; new subsection
                gr-qc astro-ph.HE

                Comments

                Comment on this article