9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Atypical Myrosinase as a Mediator of Glucosinolate Functions in Plants

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glucosinolates (GLSs) are a well-known class of specialized plant metabolites, distributed mostly in the order Brassicales. A vast research field in basic and applied sciences has grown up around GLSs owing to their presence in important agricultural crops and the model plant Arabidopsis thaliana, and their broad range of bioactivities beneficial to human health. The major purpose of GLSs in plants has been considered their function as a chemical defense against predators. GLSs are physically separated from a specialized class of beta-thioglucosidases called myrosinases, at the tissue level or at the single-cell level. They are brought together as a consequence of tissue damage, primarily triggered by herbivores, and their interaction results in the release of toxic volatile chemicals including isothiocyanates. In addition, recent studies have suggested that plants may adopt other strategies independent of tissue disruption for initiating GLS breakdown to cope with certain biotic/abiotic stresses. This hypothesis has been further supported by the discovery of an atypical class of GLS-hydrolyzing enzymes possessing features that are distinct from those of the classical myrosinases. Nevertheless, there is only little information on the physiological importance of atypical myrosinases. In this review, we focus on the broad diversity of the beta-glucosidase subclasses containing known atypical myrosinases in A. thaliana to discuss the hypothesis that numerous members of these subclasses can hydrolyze GLSs to regulate their diverse functions in plants. Also, the increasingly broadening functional repertoires of known atypical/classical myrosinases are described with reference to recent findings. Assessment of independent insights gained from A. thaliana with respect to (1) the phenotype of mutants lacking genes in the GLS metabolic/breakdown pathways, (2) fluctuation in GLS contents/metabolism under specific conditions, and (3) the response of plants to exogenous GLSs or their hydrolytic products, will enable us to reconsider the physiological importance of GLS breakdown in particular situations, which is likely to be regulated by specific beta-glucosidases.

          Related collections

          Most cited references131

          • Record: found
          • Abstract: found
          • Article: not found

          Abscisic acid biosynthesis and catabolism.

          The level of abscisic acid (ABA) in any particular tissue in a plant is determined by the rate of biosynthesis and catabolism of the hormone. Therefore, identifying all the genes involved in the metabolism is essential for a complete understanding of how this hormone directs plant growth and development. To date, almost all the biosynthetic genes have been identified through the isolation of auxotrophic mutants. On the other hand, among several ABA catabolic pathways, current genomic approaches revealed that Arabidopsis CYP707A genes encode ABA 8'-hydroxylases, which catalyze the first committed step in the predominant ABA catabolic pathway. Identification of ABA metabolic genes has revealed that multiple metabolic steps are differentially regulated to fine-tune the ABA level at both transcriptional and post-transcriptional levels. Furthermore, recent ongoing studies have given new insights into the regulation and site of ABA metabolism in relation to its physiological roles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glucosinolate metabolites required for an Arabidopsis innate immune response.

            The perception of pathogen or microbe-associated molecular pattern molecules by plants triggers a basal defense response analogous to animal innate immunity and is defined partly by the deposition of the glucan polymer callose at the cell wall at the site of pathogen contact. Transcriptional and metabolic profiling in Arabidopsis mutants, coupled with the monitoring of pathogen-triggered callose deposition, have identified major roles in pathogen response for the plant hormone ethylene and the secondary metabolite 4-methoxy-indol-3-ylmethylglucosinolate. Two genes, PEN2 and PEN3, are also necessary for resistance to pathogens and are required for both callose deposition and glucosinolate activation, suggesting that the pathogen-triggered callose response is required for resistance to microbial pathogens. Our study shows that well-studied plant metabolites, previously identified as important in avoiding damage by herbivores, are also required as a component of the plant defense response against microbial pathogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense.

              Selection pressure exerted by insects and microorganisms shapes the diversity of plant secondary metabolites. We identified a metabolic pathway for glucosinolates, known insect deterrents, that differs from the pathway activated by chewing insects. This pathway is active in living plant cells, may contribute to glucosinolate turnover, and has been recruited for broad-spectrum antifungal defense responses. The Arabidopsis CYP81F2 gene encodes a P450 monooxygenase that is essential for the pathogen-induced accumulation of 4-methoxyindol-3-ylmethylglucosinolate, which in turn is activated by the atypical PEN2 myrosinase (a type of beta-thioglucoside glucohydrolase) for antifungal defense. We propose that reiterated enzymatic cycles, controlling the generation of toxic molecules and their detoxification, enable the recruitment of glucosinolates in defense responses.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                06 August 2019
                2019
                : 10
                : 1008
                Affiliations
                RIKEN Center for Sustainable Resource Science , Yokohama, Japan
                Author notes

                Edited by: Jens Rohloff, Norwegian University of Science and Technology, Norway

                Reviewed by: Ute Wittstock, Technische Universitat Braunschweig, Germany; Verena Jeschke, University of Copenhagen, Denmark

                *Correspondence: Masami Y. Hirai, masami.hirai@ 123456riken.jp

                This article was submitted to Plant Metabolism and Chemodiversity, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2019.01008
                6691170
                31447873
                2777cb72-e3a7-49ed-bf25-7f31552f34e4
                Copyright © 2019 Sugiyama and Hirai.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 May 2019
                : 18 July 2019
                Page count
                Figures: 2, Tables: 2, Equations: 0, References: 145, Pages: 14, Words: 0
                Funding
                Funded by: Japan Society for the Promotion of Science 10.13039/501100001691
                Award ID: 18K14348
                Funded by: RIKEN 10.13039/501100006264
                Award ID: Special Postdoctoral Researcher Program
                Categories
                Plant Science
                Review

                Plant science & Botany
                glucosinolate,myrosinase,beta-glucosidase,metabolism,stress response
                Plant science & Botany
                glucosinolate, myrosinase, beta-glucosidase, metabolism, stress response

                Comments

                Comment on this article