43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development and validation of a multiplex real-time PCR assay for detection and quantification of Streptococcus pneumoniae in pediatric respiratory samples

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Streptococcus pneumoniae ( Spn) is a bacterial pathogen that causes a range of disease manifestations in children, from acute otitis media to pneumonia, septicemia, and meningitis. Primary Spn laboratory diagnostic identification methods include culture, antigen testing, single-plex real-time PCR, and syndromic PCR panels. However, each method lacks sensitivity, specificity, and/or cost efficiency. We developed and validated a quantitative, multiplex PCR assay using three Spn genomic targets ( lytA, piaB, and SP2020) for improved sensitivity and specificity to detect Spn in pleural fluid (PF), bronchoalveolar lavage (BAL), tracheal aspirate (TA), and upper respiratory (UR, research only) samples. Validation testing included analytical sensitivity (limit of detection), specimen storage, analytical specificity (cross-reactivity), and accuracy studies. Limit of detection is 500 genome copies/mL in lower respiratory samples and 100 copies/mL in upper respiratory specimens, with a quantification range of 1,000 to 10,000,000 copies/mL. Specimens can be stored frozen at least 60 days and Spn DNA is stable through three freeze-thaw cycles. No cross-reactivity was observed against 20 closely related microorganisms and/or microorganisms that can be detected in similar sample types, including Streptococcus pseudopneumoniae. In testing of residual clinical specimens, Spn was detected in 5 of 23 (21.7%) PF, 2 of 19 (10.5%) BAL, 1 of 20 (5.0%) TA, and 44 of 178 (24.7%) UR residual specimens. For accuracy studies, 98 specimens were tested and overall percent agreement with a qualitative, lytA-based comparator assay was 96.9% across all sample types. This multiplex, quantitative PCR assay is a sensitive and specific method for Spn detection in pediatric respiratory samples.

          IMPORTANCE

          Streptococcus pneumoniae ( Spn) is the world’s leading cause of lower respiratory tract infection morbidity and mortality in children. However, current clinical microbiological methods have disadvantages. Spn can be difficult to grow in laboratory conditions if a patient is pre-treated, and Spn antigen testing has unclear clinical utility in children. Syndromic panel testing is less cost-effective than targeted PCR if clinical suspicion is high for a single pathogen. Also, such testing entails a full, expensive validation for each panel target if used for multiple respiratory sources. Therefore, better diagnostic modalities are needed. Our study validates a multiplex PCR assay with three genomic targets for semi-quantitative and quantitative Spn molecular detection from lower respiratory sources for clinical testing and from upper respiratory sources for research investigation.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

          Summary Background Lower respiratory infections are a leading cause of morbidity and mortality around the world. The Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study 2016, provides an up-to-date analysis of the burden of lower respiratory infections in 195 countries. This study assesses cases, deaths, and aetiologies spanning the past 26 years and shows how the burden of lower respiratory infection has changed in people of all ages. Methods We used three separate modelling strategies for lower respiratory infections in GBD 2016: a Bayesian hierarchical ensemble modelling platform (Cause of Death Ensemble model), which uses vital registration, verbal autopsy data, and surveillance system data to predict mortality due to lower respiratory infections; a compartmental meta-regression tool (DisMod-MR), which uses scientific literature, population representative surveys, and health-care data to predict incidence, prevalence, and mortality; and modelling of counterfactual estimates of the population attributable fraction of lower respiratory infection episodes due to Streptococcus pneumoniae, Haemophilus influenzae type b, influenza, and respiratory syncytial virus. We calculated each modelled estimate for each age, sex, year, and location. We modelled the exposure level in a population for a given risk factor using DisMod-MR and a spatio-temporal Gaussian process regression, and assessed the effectiveness of targeted interventions for each risk factor in children younger than 5 years. We also did a decomposition analysis of the change in LRI deaths from 2000–16 using the risk factors associated with LRI in GBD 2016. Findings In 2016, lower respiratory infections caused 652 572 deaths (95% uncertainty interval [UI] 586 475–720 612) in children younger than 5 years (under-5s), 1 080 958 deaths (943 749–1 170 638) in adults older than 70 years, and 2 377 697 deaths (2 145 584–2 512 809) in people of all ages, worldwide. Streptococcus pneumoniae was the leading cause of lower respiratory infection morbidity and mortality globally, contributing to more deaths than all other aetiologies combined in 2016 (1 189 937 deaths, 95% UI 690 445–1 770 660). Childhood wasting remains the leading risk factor for lower respiratory infection mortality among children younger than 5 years, responsible for 61·4% of lower respiratory infection deaths in 2016 (95% UI 45·7–69·6). Interventions to improve wasting, household air pollution, ambient particulate matter pollution, and expanded antibiotic use could avert one under-5 death due to lower respiratory infection for every 4000 children treated in the countries with the highest lower respiratory infection burden. Interpretation Our findings show substantial progress in the reduction of lower respiratory infection burden, but this progress has not been equal across locations, has been driven by decreases in several primary risk factors, and might require more effort among elderly adults. By highlighting regions and populations with the highest burden, and the risk factors that could have the greatest effect, funders, policy makers, and programme implementers can more effectively reduce lower respiratory infections among the world's most susceptible populations. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Streptococcus pneumoniae colonisation: the key to pneumococcal disease.

            Streptococcus pneumoniae is an important pathogen causing invasive diseases such as sepsis, meningitis, and pneumonia. The burden of disease is highest in the youngest and oldest sections of the population in both more and less developed countries. The treatment of pneumococcal infections is complicated by the worldwide emergence in pneumococci of resistance to penicillin and other antibiotics. Pneumococcal disease is preceded by asymptomatic colonisation, which is especially high in children. The current seven-valent conjugate vaccine is highly effective against invasive disease caused by the vaccine-type strains. However, vaccine coverage is limited, and replacement by non-vaccine serotypes resulting in disease is a serious threat for the near future. Therefore, the search for new vaccine candidates that elicit protection against a broader range of pneumococcal strains is important. Several surface-associated protein vaccines are currently under investigation. Another important issue is whether the aim should be to prevent pneumococcal disease by eradication of nasopharyngeal colonisation, or to prevent bacterial invasion leaving colonisation relatively unaffected and hence preventing the occurrence of replacement colonisation and disease. To illustrate the importance of pneumococcal colonisation in relation to pneumococcal disease and prevention of disease, we discuss the mechanism and epidemiology of colonisation, the complexity of relations within and between species, and the consequences of the different preventive strategies for pneumococcal colonisation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evaluation and improvement of real-time PCR assays targeting lytA, ply, and psaA genes for detection of pneumococcal DNA.

              The accurate diagnosis of pneumococcal disease has frequently been hampered not only by the difficulties in obtaining isolates of the organism from patient specimens but also by the misidentification of pneumococcus-like viridans group streptococci (P-LVS) as Streptococcus pneumoniae. This is especially critical when the specimen comes from the respiratory tract. In this study, three novel real-time PCR assays designed for the detection of specific sequence regions of the lytA, ply, and psaA genes were developed (lytA-CDC, ply-CDC, and psaA, respectively). These assays showed high sensitivity (<10 copies for lytA-CDC and ply-CDC and an approximately twofold less sensitivity for psaA). Two additional real-time PCR assays for lytA and ply described previously for pneumococcal DNA detection were also evaluated. A panel of isolates consisting of 67 S. pneumoniae isolates (44 different serotypes and 3 nonencapsulated S. pneumoniae isolates from conjunctivitis outbreaks) and 104 nonpneumococcal isolates was used. The 67 S. pneumoniae isolates were reactive in all five assays. The new real-time detection assays targeting the lytA and psaA genes were the most specific for the detection of isolates confirmed to be S. pneumoniae, with lytA-CDC showing the greatest specificity. Both ply PCRs were positive for all isolates of S. pseudopneumoniae, along with 13 other isolates of other P-LVS isolates confirmed to be non-S. pneumoniae by DNA-DNA reassociation. Thus, the use of the ply gene for the detection of pneumococci can lead to false-positive reactions in the presence of P-LVS. The five assays were applied to 15 culture-positive cerebrospinal fluid specimens with 100% sensitivity; and serum and ear fluid specimens were also evaluated. Both the lytA-CDC and psaA assays, particularly the lytA-CDC assay, have improved specificities compared with those of currently available assays and should therefore be considered the assays of choice for the detection of pneumococcal DNA, particularly when upper respiratory P-LVS might be present in the clinical specimen.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Project administrationRole: SoftwareRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review and editing
                Role: ConceptualizationRole: InvestigationRole: MethodologyRole: ValidationRole: Writing – review and editing
                Role: ConceptualizationRole: MethodologyRole: ResourcesRole: SoftwareRole: ValidationRole: Writing – review and editing
                Role: ConceptualizationRole: Formal analysisRole: MethodologyRole: VisualizationRole: Writing – review and editing
                Role: ConceptualizationRole: ResourcesRole: ValidationRole: Writing – review and editing
                Role: Data curationRole: InvestigationRole: MethodologyRole: ValidationRole: Writing – review and editing
                Role: Data curationRole: Formal analysisRole: InvestigationRole: ValidationRole: Writing – review and editing
                Role: ConceptualizationRole: Formal analysisRole: InvestigationRole: MethodologyRole: SupervisionRole: ValidationRole: Writing – original draftRole: Writing – review and editing
                Role: Editor
                Journal
                Microbiol Spectr
                Microbiol Spectr
                spectrum
                Microbiology Spectrum
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2165-0497
                Nov-Dec 2023
                08 November 2023
                08 November 2023
                : 11
                : 6
                : e02118-23
                Affiliations
                [1 ] Children’s Hospital Colorado; , Aurora, Colorado, USA
                [2 ] University of Colorado School of Medicine; , Aurora, Colorado, USA
                [3 ] Texas Children’s Hospital; , Houston, Texas, USA
                [4 ] Baylor College of Medicine; , Houston, Texas, USA
                University of Maryland School of Medicine; , Baltimore, Maryland, USA
                Author notes
                Address correspondence to Sarah A. Jung, Sarah.Jung@ 123456childrenscolorado.org

                Most of the funding and resources were provided by the Department of Laboratory Medicine and Pathology at Children's Hospital Colorado. A portion of the funding and resources was provided by Pfizer (New York, NY) for a separate, collaborative project, of which the data and conclusions are not included in this manuscript. S.A.J. has received support from DiaSorin Molecular LLC, Karius Inc, and bioMérieux for conference attendance. DiaSorin Molecular LLC and Abbott Molecular have partnered with the Children's Hospital CO Clinical Microbiology Laboratory and have provided reagents and supplies. M.B. received support from Pfizer for conference attendance. Pfizer has partnered with the Children's Hospital CO Clinical Microbiology Laboratory and provided reagents and supplies. S.R.D. received grant support from Pfizer and BioFire Diagnostics and serves as a consultant for Karius and BioFire Diagnostics. K.H. receives research support from Pfizer.

                Author information
                https://orcid.org/0000-0002-7414-9276
                Article
                02118-23 spectrum.02118-23
                10.1128/spectrum.02118-23
                10715132
                37937989
                276e5a7a-71fb-48ae-8668-00906382aaed
                Copyright © 2023 Butler et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 19 May 2023
                : 01 August 2023
                Page count
                supplementary-material: 0, authors: 8, Figures: 5, Tables: 6, References: 28, Pages: 13, Words: 7029
                Categories
                Research Article
                clinical-microbiology, Clinical Microbiology
                Custom metadata
                November/December 2023

                pcr,streptococcus pneumoniae,pediatric,respiratory samples,validation

                Comments

                Comment on this article