15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reprogramming lipid metabolism as potential strategy for hematological malignancy therapy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hematological malignancies are one of the most lethal illnesses that seriously threaten human life and health. Lipids are important constituents of various biological membranes and substances for energy storage and cell signaling. Furthermore, lipids are critical in the normal physiological activities of cells. In the process of the lethal transformation of hematological malignancies, lipid metabolism reprogramming meets the material and energy requirements of rapidly proliferating and dividing tumor cells. A large number of studies have shown that dysregulated lipid metabolism, commonly occurs in hematological malignancies, mediating the proliferation, growth, migration, invasion, apoptosis, drug resistance and immune escape of tumor cells. Targeting the lipid metabolism pathway of hematological malignancies has become an effective therapeutic approach. This article reviews the oncogenic mechanisms of lipid metabolism reprogramming in hematological malignancies, including fatty acid, cholesterol and phospholipid metabolism, thereby offering an insight into targeting lipid metabolism in the treatment of hematological malignancies.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia.

            The World Health Organization (WHO) classification of tumors of the hematopoietic and lymphoid tissues was last updated in 2008. Since then, there have been numerous advances in the identification of unique biomarkers associated with some myeloid neoplasms and acute leukemias, largely derived from gene expression analysis and next-generation sequencing that can significantly improve the diagnostic criteria as well as the prognostic relevance of entities currently included in the WHO classification and that also suggest new entities that should be added. Therefore, there is a clear need for a revision to the current classification. The revisions to the categories of myeloid neoplasms and acute leukemia will be published in a monograph in 2016 and reflect a consensus of opinion of hematopathologists, hematologists, oncologists, and geneticists. The 2016 edition represents a revision of the prior classification rather than an entirely new classification and attempts to incorporate new clinical, prognostic, morphologic, immunophenotypic, and genetic data that have emerged since the last edition. The major changes in the classification and their rationale are presented here.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              On the Origin of Cancer Cells

              O WARBURG (1956)
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                29 August 2022
                2022
                : 12
                : 987499
                Affiliations
                [1] 1 School of Engineering Medicine, Beihang University , Beijing, China
                [2] 2 School of Biological Science and Medical Engineering, Beihang University , Beijing, China
                [3] 3 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University , Beijing, China
                [4] 4 Peking University Cancer Hospital , Beijing, China
                [5] 5 Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University , Dalian, China
                Author notes

                Edited by: Hubing Shi, Sichuan University, China

                Reviewed by: Yaming Shan, Jilin University, China; Feng Wang, Beijing Institute of Technology, China

                *Correspondence: Linlin Sui, linlin19810622@ 123456sina.com ; Wei Chen, chenw123@ 123456buaa.edu.cn

                †These authors contributed equally to this work

                This article was submitted to Cancer Metabolism, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2022.987499
                9465383
                36106108
                2757c36b-0207-4def-86bd-b9184889e1d0
                Copyright © 2022 Zhang, Chang, Liu, Liu, Wu, Sui and Chen

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 July 2022
                : 01 August 2022
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 115, Pages: 11, Words: 5358
                Categories
                Oncology
                Review

                Oncology & Radiotherapy
                lipid metabolism reprogramming,cholesterol,fatty acids,phospholipids,hematological malignancies

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content329

                Cited by4

                Most referenced authors1,536