14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Polymeric curcumin nanoparticle pharmacokinetics and metabolism in bile duct cannulated rats.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The objective of this study was to compare the pharmacokinetics and metabolism of polymeric nanoparticle-encapsulated (nanocurcumin) and solvent-solubilized curcumin formulations in Sprague-Dawley (SD) rats. Nanocurcumin is currently under development for cancer therapy. Since free, unencapsulated curcumin is rapidly metabolized and excreted in rats, upon intravenous (i.v.) administration of nanocurcumin only nanoparticle-encapsulated curcumin can be detected in plasma samples. Hence, the second objective of this study was to utilize the metabolic instability of curcumin to assess in vivo drug release from nanocurcumin. Nanocurcumin and solvent-solubilized curcumin were administered at 10 mg curcumin/kg by jugular vein to bile duct-cannulated male SD rats (n = 5). Nanocurcumin increased the plasma Cmax of curcumin 1749 fold relative to the solvent-solubilized curcumin. Nanocurcumin also increased the relative abundance of curcumin and glucuronides in bile but did not dramatically alter urine and tissue metabolite profiles. The observed increase in biliary and urinary excretion of both curcumin and metabolites for the nanocurcumin formulation suggested a rapid "burst" release of curcumin. Although the burst release observed in this study is a limitation for targeted tumor delivery, nanocurcumin still exhibits major advantages over solvent-solubilized curcumin, as the nanoformulation does not result in the lung accumulation observed for the solvent-solubilized curcumin and increases overall systemic curcumin exposure. Additionally, the remaining encapsulated curcumin fraction following burst release is available for tumor delivery via the enhanced permeation and retention effect commonly observed for nanoparticle formulations.

          Related collections

          Author and article information

          Journal
          Mol. Pharm.
          Molecular pharmaceutics
          American Chemical Society (ACS)
          1543-8392
          1543-8384
          May 06 2013
          : 10
          : 5
          Affiliations
          [1 ] Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, United States.
          Article
          NIHMS464027
          10.1021/mp4000019
          3683459
          23534919
          27477111-5bed-4243-a999-71d901e1b5e4
          History

          Comments

          Comment on this article