14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antiviral Activity Against Infectious Bronchitis Virus and Bioactive Components of Hypericum perforatum L.

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hypericum perforatum L., also known as Saint John’s Wort, has been well studied for its chemical composition and pharmacological activity. In this study, the antiviral activities of H. perforatum on infectious bronchitis virus (IBV) were evaluated in vitro and in vivo for the first time. The results of in vitro experiments confirmed that the antiviral component of H. perforatum was ethyl acetate extraction section (HPE), and results showed that treatment with HPE significantly reduced the relative messenger ribonucleic acid (mRNA) expression and virus titer of IBV, and reduced positive green immunofluorescence signal of IBV in chicken embryo kidney (CEK) cells. HPE treatment at doses of 480–120 mg/kg for 5 days, reduced IBV induced injury in the trachea and kidney, moreover, reduced the mRNA expression level of IBV in the trachea and kidney in vivo. The mRNA expression levels of IL-6, tumor necrosis factor alpha (TNF-α), and nuclear factor kappa beta (NF-κB) significantly decreased, but melanoma differentiation-associated protein 5 (MDA5), mitochondrial antiviral signaling gene, interferon alpha (IFN-α), and interferon beta (IFN-β) mRNA levels significantly increased in vitro and in vivo. Our findings demonstrated that HPE had significant anti-IBV effects in vitro and in vivo, respectively. In addition, it is possible owing to up-regulate mRNA expression of type I interferon through the MDA5 signaling pathway and down-regulate mRNA expression of IL-6 and TNF-α via the NF-κB signaling pathway. Moreover, the mainly active compositions of HPE analyzed by high-performance liquid chromatography/electrospray ionization–mass spectroscopy (ESI-MS) are hyperoside, quercitrin, quercetin, pseudohypericin, and hypericin, and a combination of these compounds could mediate the antiviral activities. This might accelerate our understanding of the antiviral effect of H. perforatum and provide new insights into the development of effective therapeutic strategies.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging.

          Innate and adaptive immunity are the major defence mechanisms of higher organisms against inherent and environmental threats. Innate immunity is present already in unicellular organisms but evolution has added novel adaptive immune mechanisms to the defence armament. Interestingly, during aging, adaptive immunity significantly declines, a phenomenon called immunosenescence, whereas innate immunity seems to be activated which induces a characteristic pro-inflammatory profile. This process is called inflamm-aging. The recognition and signaling mechanisms involved in innate immunity have been conserved during evolution. The master regulator of the innate immunity is the NF-kB system, an ancient signaling pathway found in both insects and vertebrates. The NF-kB system is in the nodal point linking together the pathogenic assault signals and cellular danger signals and then organizing the cellular resistance. Recent studies have revealed that SIRT1 (Sir2 homolog) and FoxO (DAF-16), the key regulators of aging in budding yeast and Caenorhabditis elegans models, regulate the efficiency of NF-kB signaling and the level of inflammatory responses. We will review the role of innate immunity signaling in the aging process and examine the function of NF-kB system in the organization of defence mechanisms and in addition, its interactions with the protein products of several gerontogenes. Our conclusion is that NF-kB signaling seems to be the culprit of inflamm-aging, since this signaling system integrates the intracellular regulation of immune responses in both aging and age-related diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The long view: 40 years of infectious bronchitis research.

            The remit of this review is to provide the non-specialist reader of Avian Pathology with an overview of research carried out on infectious bronchitis over the 40 years since the journal was first published. In order to do this, we felt it necessary to summarize the knowledge acquired previously, since the since the disease was first identified in the 1930s. Infectious bronchitis virus is a significant pathogen in the domestic chicken, affecting the respiratory and renal systems as well as the female reproductive tract. The virus exists in the form of many, ever changing, serotypic or genotypic variants, some of which have global distribution whilst others are found only in more local areas. This review mentions the major discoveries concerning both the virus itself and the types of disease it causes and considers recent changes in its pathogenesis. It also discusses the impact of developments in the field of molecular biology and highlights possible areas for future work.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response

              TANK-binding kinase 1 (TBK1) is of central importance for the induction of type-I interferon (IFN) in response to pathogens. We identified the DEAD-box helicase DDX3X as an interaction partner of TBK1. TBK1 and DDX3X acted synergistically in their ability to stimulate the IFN promoter, whereas RNAi-mediated reduction of DDX3X expression led to an impairment of IFN production. Chromatin immunoprecipitation indicated that DDX3X is recruited to the IFN promoter upon infection with Listeria monocytogenes, suggesting a transcriptional mechanism of action. DDX3X was found to be a TBK1 substrate in vitro and in vivo. Phosphorylation-deficient mutants of DDX3X failed to synergize with TBK1 in their ability to stimulate the IFN promoter. Overall, our data imply that DDX3X is a critical effector of TBK1 that is necessary for type I IFN induction.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                29 October 2019
                2019
                : 10
                : 1272
                Affiliations
                [1] 1Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University , Harbin, China
                [2] 2College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University , Jilin, China
                [3] 3Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University , Harbin, China
                Author notes

                Edited by: Namrita Lall, University of Pretoria, South Africa

                Reviewed by: Rodrigo A. Gallardo, University of California, Davis, United States; Vivekananda Mandal, Guru Ghasidas Vishwavidyalaya, India

                *Correspondence: Guangxing Li, ligx@ 123456neau.edu.cn

                This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2019.01272
                6830131
                31736754
                2733a6a8-321d-411b-ae14-168c3cc9e7cb
                Copyright © 2019 Chen, Muhammad, Zhang, Ren, Zhang, Huang, Diao, Liu, Li, Sun, Abbas and Li

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 May 2019
                : 04 October 2019
                Page count
                Figures: 12, Tables: 4, Equations: 1, References: 71, Pages: 22, Words: 8957
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                hypericum perforatum l.,infectious bronchitis virus,antiviral activity,melanoma differentiation-associated protein 5,nuclear factor kappa beta,high-performance liquid chromatography/electrospray ionization-mass spectroscopy

                Comments

                Comment on this article