5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Data on Adiponectin from 2010 to 2020: Therapeutic Target and Prognostic Factor for Liver Diseases?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The review describes the role of adiponectin in liver diseases in the presence and absence of surgery reported in the literature in the last ten years. The most updated therapeutic strategies based on the regulation of adiponectin including pharmacological and surgical interventions and adiponectin knockout rodents, as well as some of the scientific controversies in this field, are described. Whether adiponectin could be a potential therapeutic target for the treatment of liver diseases and patients submitted to hepatic resection or liver transplantation are discussed. Furthermore, preclinical and clinical data on the mechanism of action of adiponectin in different liver diseases (nonalcoholic fatty disease, alcoholic liver disease, nonalcoholic steatohepatitis, liver cirrhosis and hepatocellular carcinoma) in the absence or presence of surgery are evaluated in order to establish potential targets that might be useful for the treatment of liver disease as well as in the practice of liver surgery associated with the hepatic resections of tumors and liver transplantation.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions.

          Adiponectin plays a central role as an antidiabetic and antiatherogenic adipokine. AdipoR1 and AdipoR2 serve as receptors for adiponectin in vitro, and their reduction in obesity seems to be correlated with reduced adiponectin sensitivity. Here we show that adenovirus-mediated expression of AdipoR1 and R2 in the liver of Lepr(-/-) mice increased AMP-activated protein kinase (AMPK) activation and peroxisome proliferator-activated receptor (PPAR)-alpha signaling pathways, respectively. Activation of AMPK reduced gluconeogenesis, whereas expression of the receptors in both cases increased fatty acid oxidation and lead to an amelioration of diabetes. Alternatively, targeted disruption of AdipoR1 resulted in the abrogation of adiponectin-induced AMPK activation, whereas that of AdipoR2 resulted in decreased activity of PPAR-alpha signaling pathways. Simultaneous disruption of both AdipoR1 and R2 abolished adiponectin binding and actions, resulting in increased tissue triglyceride content, inflammation and oxidative stress, and thus leading to insulin resistance and marked glucose intolerance. Therefore, AdipoR1 and R2 serve as the predominant receptors for adiponectin in vivo and play important roles in the regulation of glucose and lipid metabolism, inflammation and oxidative stress in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Obesity, Inflammation, and Cancer.

            Obesity, a worldwide epidemic, confers increased risk for multiple serious conditions, including cancer, and is increasingly recognized as a growing cause of preventable cancer risk. Chronic inflammation, a well-known mediator of cancer, is a central characteristic of obesity, leading to many of its complications, and obesity-induced inflammation confers additional cancer risk beyond obesity itself. Multiple mechanisms facilitate this strong association between cancer and obesity. Adipose tissue is an important endocrine organ, secreting several hormones, including leptin and adiponectin, and chemokines that can regulate tumor behavior, inflammation, and the tumor microenvironment. Excessive adipose expansion during obesity causes adipose dysfunction and inflammation to increase systemic levels of proinflammatory factors. Cells from adipose tissue, such as cancer-associated adipocytes and adipose-derived stem cells, enter the cancer microenvironment to enhance protumoral effects. Dysregulated metabolism that stems from obesity, including insulin resistance, hyperglycemia, and dyslipidemia, can further impact tumor growth and development. This review describes how adipose tissue becomes inflamed in obesity, summarizes ways these mechanisms impact cancer development, and discusses their role in four adipose-associated cancers that demonstrate elevated incidence or mortality in obesity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Melatonin as a natural ally against oxidative stress: a physicochemical examination.

              Oxidative stress has been proven to be related to the onset of a large number of health disorders. This chemical stress is triggered by an excess of free radicals, which are generated in cells because of a wide variety of exogenous and endogenous processes. Therefore, finding strategies for efficiently detoxifying free radicals has become a subject of a great interest, from both an academic and practical points of view. Melatonin is a ubiquitous and versatile molecule that exhibits most of the desirable characteristics of a good antioxidant. The amount of data gathered so far regarding the protective action of melatonin against oxidative stress is overwhelming. However, rather little is known concerning the chemical mechanisms involved in this activity. This review summarizes the current progress in understanding the physicochemical insights related to the free radical-scavenging activity of melatonin. Thus far, there is a general agreement that electron transfer and hydrogen transfer are the main mechanisms involved in the reactions of melatonin with free radicals. However, the relative importance of other mechanisms is also analyzed. The chemical nature of the reacting free radical also has an influence on the relative importance of the different mechanisms of these reactions. Therefore, this point has also been discussed in detail in the current review. Based on the available data, it is concluded that melatonin efficiently protects against oxidative stress by a variety of mechanisms. Moreover, it is proposed that even though it has been referred to as the chemical expression of darkness, perhaps it could also be referred to as the chemical light of health. © 2011 John Wiley & Sons A/S.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                23 July 2020
                August 2020
                : 21
                : 15
                : 5242
                Affiliations
                [1 ]Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; misaqheydari@ 123456gmail.com (M.H.); cornide@ 123456clinic.cat (M.E.C.-P.)
                [2 ]Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
                Author notes
                [* ]Correspondence: monicabjimenez@ 123456hotmail.com ; (M.B.J.-C.); cperalta@ 123456clinic.cat (C.P.); Tel.: +34-932275400 (M.B.J.-C.); +34-932275400 (C.P.)
                Author information
                https://orcid.org/0000-0002-7098-3407
                https://orcid.org/0000-0002-1623-8131
                https://orcid.org/0000-0002-5890-1042
                https://orcid.org/0000-0002-5767-0676
                Article
                ijms-21-05242
                10.3390/ijms21155242
                7432057
                32718097
                272c8164-5670-400e-856a-58db7bc068d9
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 19 June 2020
                : 22 July 2020
                Categories
                Review

                Molecular biology
                adiponectin,ischemia-reperfusion,liver transplantation,partial hepatectomy,nafld,nash

                Comments

                Comment on this article