25
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Predicted Aflatoxin B 1 Increase in Europe Due to Climate Change: Actions and Reactions at Global Level

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Climate change (CC) is predicted to increase the risk of aflatoxin (AF) contamination in maize, as highlighted by a project supported by EFSA in 2009. We performed a comprehensive literature search using the Scopus search engine to extract peer-reviewed studies citing this study. A total of 224 papers were identified after step I filtering (187 + 37), while step II filtering identified 25 of these papers for quantitative analysis. The unselected papers (199) were categorized as “actions” because they provided a sounding board for the expected impact of CC on AFB 1 contamination, without adding new data on the topic. The remaining papers were considered as “reactions” of the scientific community because they went a step further in their data and ideas. Interesting statements taken from the “reactions” could be summarized with the following keywords: Chain and multi-actor approach, intersectoral and multidisciplinary, resilience, human and animal health, and global vision. In addition, fields meriting increased research efforts were summarized as the improvement of predictive modeling; extension to different crops and geographic areas; and the impact of CC on fungi and mycotoxin co-occurrence, both in crops and their value chains, up to consumers.

          Related collections

          Most cited references253

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%

          Prior to 1985 the Food and Agriculture Organization (FAO) estimated global food crop contamination with mycotoxins to be 25%. The origin of this statement is largely unknown. To assess the rationale for it, the relevant literature was reviewed and data of around 500,000 analyses from the European Food Safety Authority and large global survey for aflatoxins, fumonisins, deoxynivalenol, T-2 and HT-2 toxins, zearalenone and ochratoxin A in cereals and nuts were examined. Using different thresholds, i.e. limit of detection, the lower and upper regulatory limits of European Union (EU) legislation and Codex Alimentarius standards, the mycotoxin occurrence was estimated. Impact of different aspects on uncertainty of the occurrence estimates presented in literature and related to our results are critically discussed. Current mycotoxin occurrence above the EU and Codex limits appears to confirm the FAO 25% estimate, while this figure greatly underestimates the occurrence above the detectable levels (up to 60-80%). The high occurrence is likely explained by a combination of the improved sensitivity of analytical methods and impact of climate change. It is of immense importance that the detectable levels are not overlooked as through diets, humans are exposed to mycotoxin mixtures which can induce combined adverse health effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Aflatoxin B1 contamination in maize in Europe increases due to climate change

            Climate change has been reported as a driver for emerging food and feed safety issues worldwide and its expected impact on the presence of mycotoxins in food and feed is of great concern. Aflatoxins have the highest acute and chronic toxicity of all mycotoxins; hence, the maximal concentration in agricultural food and feed products and their commodities is regulated worldwide. The possible change in patterns of aflatoxin occurrence in crops due to climate change is a matter of concern that may require anticipatory actions. The aim of this study was to predict aflatoxin contamination in maize and wheat crops, within the next 100 years, under a +2 °C and +5 °C climate change scenario, applying a modelling approach. Europe was virtually covered by a net, 50 × 50 km grids, identifying 2254 meshes with a central point each. Climate data were generated for each point, linked to predictive models and predictions were run consequently. Aflatoxin B1 is predicted to become a food safety issue in maize in Europe, especially in the +2 °C scenario, the most probable scenario of climate change expected for the next years. These results represent a supporting tool to reinforce aflatoxin management and to prevent human and animal exposure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods

              Aflatoxins are a class of carcinogenic mycotoxins produced by Aspergillus fungi and are known to contaminate a large portion of the world's food supply. Aflatoxin B1 (AFB1) is the most potent of these compounds and has been well-characterized to lead to the development of hepatocellular carcinoma (HCC) in humans and animals. This review focuses on the metabolism of AFB1, including epoxidation and DNA adduction, as it concerns the initiation of cancer and the underlying mechanisms. The link between AFB1 consumption and HCC is also discussed including synergistic interactions with the hepatitis B virus. Toxic effects of AFB1, including growth suppression, malnutrition, and immunomodulation, are also covered. This review also describes recent reports of AFB1 occurrence in global food supplies and exposures in occupational settings. Furthermore, a summary of recent detoxification methods is included to indicate the present state of the field in developing aflatoxin control methods. This information shows that AFB1 occurs frequently in food supplies at high concentrations, particularly in maize. Regarding detoxification methods, chemical control methods were the fastest methods that still retained high detoxification efficacy. The information presented here highlights the need to implement new and/or existing detoxification methods to reduce the global burden of AFB1 toxicity.
                Bookmark

                Author and article information

                Journal
                Toxins (Basel)
                Toxins (Basel)
                toxins
                Toxins
                MDPI
                2072-6651
                20 April 2021
                April 2021
                : 13
                : 4
                : 292
                Affiliations
                [1 ]Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; marco.camardoleggieri@ 123456unicatt.it
                [2 ]IBE-CNR, Institute of BioEconomy-National Research Council, Via Giovanni Caproni 8, 50145 Florence, Italy; piero.toscano@ 123456ibe.cnr.it
                Author notes
                [* ]Correspondence: paola.battilani@ 123456unicatt.it ; Tel.: +39-0523-599254
                [†]

                The three authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-6547-7702
                https://orcid.org/0000-0001-9184-0707
                https://orcid.org/0000-0003-1287-1711
                Article
                toxins-13-00292
                10.3390/toxins13040292
                8074758
                33924246
                2726fe85-097f-491c-967e-216ac2886896
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 01 April 2021
                : 18 April 2021
                Categories
                Review

                Molecular medicine
                aspergillus flavus,mycotoxin,crop modeling,predictive model,co-occurrence,food,feed,risk assessment,safety

                Comments

                Comment on this article