67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vaccinia extracellular virions enter cells by macropinocytosis and acid-activated membrane rupture

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vaccinia virus (VACV), the model poxvirus, produces two types of infectious particles: mature virions (MVs) and extracellular virions (EVs). EV particles possess two membranes and therefore require an unusual cellular entry mechanism. By a combination of fluorescence and electron microscopy as well as flow cytometry, we investigated the cellular processes that EVs required to infect HeLa cells. We found that EV particles were endocytosed, and that internalization and infection depended on actin rearrangements, activity of Na +/H + exchangers, and signalling events typical for the macropinocytic mechanism of endocytosis. To promote their internalization, EVs were capable of actively triggering macropinocytosis. EV infection also required vacuolar acidification, and acid exposure in endocytic vacuoles was needed to disrupt the outer EV membrane. Once exposed, the underlying MV-like particle presumably fused its single membrane with the limiting vacuolar membrane. Release of the viral core into the host cell cytosol allowed for productive infection.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Specificity and mechanism of action of some commonly used protein kinase inhibitors.

          The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Feature point tracking and trajectory analysis for video imaging in cell biology.

            This paper presents a computationally efficient, two-dimensional, feature point tracking algorithm for the automated detection and quantitative analysis of particle trajectories as recorded by video imaging in cell biology. The tracking process requires no a priori mathematical modeling of the motion, it is self-initializing, it discriminates spurious detections, and it can handle temporary occlusion as well as particle appearance and disappearance from the image region. The efficiency of the algorithm is validated on synthetic video data where it is compared to existing methods and its accuracy and precision are assessed for a wide range of signal-to-noise ratios. The algorithm is well suited for video imaging in cell biology relying on low-intensity fluorescence microscopy. Its applicability is demonstrated in three case studies involving transport of low-density lipoproteins in endosomes, motion of fluorescently labeled Adenovirus-2 particles along microtubules, and tracking of quantum dots on the plasma membrane of live cells. The present automated tracking process enables the quantification of dispersive processes in cell biology using techniques such as moment scaling spectra.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Virus Entry: Open Sesame

              Detailed information about the replication cycle of viruses and their interactions with host organisms is required to develop strategies to stop them. Cell biology studies, live-cell imaging, and systems biology have started to illuminate the multiple and subtly different pathways that animal viruses use to enter host cells. These insights are revolutionizing our understanding of endocytosis and the movement of vesicles within cells. In addition, such insights reveal new targets for attacking viruses before they can usurp the host-cell machinery for replication.
                Bookmark

                Author and article information

                Journal
                EMBO J
                The EMBO Journal
                Nature Publishing Group
                0261-4189
                1460-2075
                31 August 2011
                26 July 2011
                26 July 2011
                : 30
                : 17
                : 3647-3661
                Affiliations
                [1 ]simpleInstitute of Biochemistry, ETH Zurich , Zurich, Switzerland
                [2 ]simpleCenter for Cellular Imaging and Nano Analytics (C-CINA), Biozentrum, University of Basel , Basel, Switzerland
                Author notes
                [a ]Institute of Biochemistry, ETH Zurich, ETH Hoenggerberg—HPM E9.1, Schafmattstr. 18, Zurich 8093, Switzerland. Tel.: +41 44 632 5818; Fax: +41 44 632 1269; E-mail: jason.mercer@ 123456bc.biol.ethz.ch
                Article
                emboj2011245
                10.1038/emboj.2011.245
                3181475
                21792173
                2726f8ec-7c3e-42b3-b603-a855769f864e
                Copyright © 2011, European Molecular Biology Organization

                This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial Share Alike 3.0 Unported License, which allows readers to alter, transform, or build upon the article and then distribute the resulting work under the same or similar license to this one. The work must be attributed back to the original author and commercial use is not permitted without specific permission.

                History
                : 17 January 2011
                : 29 June 2011
                Categories
                Article

                Molecular biology
                vaccinia virus,extracellular virion,poxvirus,macropinocytosis,acid-activated rupture

                Comments

                Comment on this article