3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A brief view of factors that affect plant virus evolution

      ,
      Frontiers in Virology
      Frontiers Media SA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Viruses are highly evolvable biological entities capable of wreaking havoc on our society. Therefore, a better understanding of virus evolution is important for two main reasons: (i) it will lead to better management of current diseases and prevention of future ones, and (ii) it will contribute to a better understanding of evolutionary processes and their dynamics. In order to understand the evolution of viruses as a whole, it is necessary to consider different elements that shape virus evolution. In this review, we give a general overview of the most relevant factors that determine the evolution of plant viruses. We will focus on mutation rates, epistasis, robustness, recombination, genome organization, virus-host interactions, transmission, community interactions and abiotic factors. Since this review gives a summarized overview of the most important factors in virus evolution it can be a useful starting material for anyone interested in approaching (plant) virus evolution.

          Related collections

          Most cited references179

          • Record: found
          • Abstract: found
          • Article: not found

          Abiotic and biotic stress combinations.

          Environmental stress conditions such as drought, heat, salinity, cold, or pathogen infection can have a devastating impact on plant growth and yield under field conditions. Nevertheless, the effects of these stresses on plants are typically being studied under controlled growth conditions in the laboratory. The field environment is very different from the controlled conditions used in laboratory studies, and often involves the simultaneous exposure of plants to more than one abiotic and/or biotic stress condition, such as a combination of drought and heat, drought and cold, salinity and heat, or any of the major abiotic stresses combined with pathogen infection. Recent studies have revealed that the response of plants to combinations of two or more stress conditions is unique and cannot be directly extrapolated from the response of plants to each of the different stresses applied individually. Moreover, the simultaneous occurrence of different stresses results in a high degree of complexity in plant responses, as the responses to the combined stresses are largely controlled by different, and sometimes opposing, signaling pathways that may interact and inhibit each other. In this review, we will provide an update on recent studies focusing on the response of plants to a combination of different stresses. In particular, we will address how different stress responses are integrated and how they impact plant growth and physiological traits. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Why do RNA viruses recombine?

            Key Points RNA viruses are able to undergo two forms of recombination: RNA recombination, which (in principle) can occur in any type of RNA virus, and reassortment, which is restricted to those viruses with segmented genomes. Rates of RNA recombination vary markedly among RNA viruses. Some viruses, particularly those with negative-sense single-stranded genomes, exhibit such low rates of recombination that they are effectively clonal. By contrast, some positive-sense single-stranded RNA viruses and some retroviruses such as HIV exhibit high rates of recombination that can exceed the rates of mutation when measured per nucleotide. Although recombination is often argued to represent a form of sexual reproduction, there is little evidence that recombination in RNA viruses evolved as a way of creating advantageous genotypes or removing deleterious mutations. In particular, there is no association between recombination frequency and the burden of a deleterious mutation. Similarly, there is little evidence that recombination could have been selected as a form of genetic repair. The strongest association for rates of recombination in RNA viruses is with genome structure. Hence, negative-sense single-stranded RNA viruses may recombine at low rates because of the restrictive association of genomic RNA in a ribonucleoprotein complex, as well as a lack of substrates for template switching, whereas some retroviruses recombine rapidly because their virions contain two genome copies and template switching between these copies is an inevitable part of the viral replication cycle. We therefore hypothesize that recombination in RNA viruses is a mechanistic by-product of the processivity of the viral polymerase that is used in replication, and that it varies with genome structure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Why are RNA virus mutation rates so damn high?

              The high mutation rate of RNA viruses is credited with their evolvability and virulence. This Primer, however, discusses recent evidence that this is, in part, a byproduct of selection for faster genomic replication.
                Bookmark

                Author and article information

                Journal
                Frontiers in Virology
                Front. Virol.
                Frontiers Media SA
                2673-818X
                September 20 2022
                September 20 2022
                : 2
                Article
                10.3389/fviro.2022.994057
                26f727fc-78bb-4ee0-a339-04eb572a5207
                © 2022

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article