14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Heat and Drought Stress Impact on Phenology, Grain Yield, and Nutritional Quality of Lentil ( Lens culinaris Medikus)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lentil ( Lens culinaris Medikus) is a protein-rich cool-season food legume with an excellent source of protein, prebiotic carbohydrates, minerals, and vitamins. With climate change, heat, and drought stresses have become more frequent and intense in lentil growing areas with a strong influence on phenology, grain yield, and nutritional quality. This study aimed to assess the impact of heat and drought stresses on phenology, grain yield, and nutritional quality of lentil. For this purpose, 100 lentil genotypes from the global collection were evaluated under normal, heat, and combined heat-drought conditions. Analysis of variance revealed significant differences ( p < 0.001) among lentil genotypes for phenological traits, yield components, and grain quality traits. Under no stress conditions, mineral concentrations among lentil genotypes varied from 48 to 109 mg kg −1 for iron (Fe) and from 31 to 65 mg kg −1 for zinc (Zn), while crude protein content ranged from 22.5 to 32.0%. Iron, zinc, and crude protein content were significantly reduced under stress conditions, and the effect of combined heat-drought stress was more severe than heat stress alone. A significant positive correlation was observed between iron and zinc concentrations under both no stress and stress conditions. Based on grain yield, crude protein, and iron and zinc concentrations, lentil genotypes were grouped into three clusters following the hierarchical cluster analysis. Promising lentil genotypes with high micronutrient contents, crude protein, and grain yield with the least effect of heat and drought stress were identified as the potential donors for biofortification in the lentil breeding program.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: not found
          • Article: not found

          Heat tolerance in plants: An overview

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: a systematic analysis of population-representative data

            Summary Background Low haemoglobin concentrations and anaemia are important risk factors for the health and development of women and children. We estimated trends in the distributions of haemoglobin concentration and in the prevalence of anaemia and severe anaemia in young children and pregnant and non-pregnant women between 1995 and 2011. Methods We obtained data about haemoglobin and anaemia for children aged 6–59 months and women of childbearing age (15–49 years) from 257 population-representative data sources from 107 countries worldwide. We used health, nutrition, and household surveys; summary statistics from WHO's Vitamin and Mineral Nutrition Information System; and summary statistics reported by other national and international agencies. We used a Bayesian hierarchical mixture model to estimate haemoglobin distributions and systematically addressed missing data, non-linear time trends, and representativeness of data sources. We quantified the uncertainty of our estimates. Findings Global mean haemoglobin improved slightly between 1995 and 2011, from 125 g/L (95% credibility interval 123–126) to 126 g/L (124–128) in non-pregnant women, from 112 g/L (111–113) to 114 g/L (112–116) in pregnant women, and from 109 g/L (107–111) to 111 g/L (110–113) in children. Anaemia prevalence decreased from 33% (29–37) to 29% (24–35) in non-pregnant women, from 43% (39–47) to 38% (34–43) in pregnant women, and from 47% (43–51) to 43% (38–47) in children. These prevalences translated to 496 million (409–595 million) non-pregnant women, 32 million (28–36 million) pregnant women, and 273 million (242–304 million) children with anaemia in 2011. In 2011, concentrations of mean haemoglobin were lowest and anaemia prevalence was highest in south Asia and central and west Africa. Interpretation Children's and women's haemoglobin statuses improved in some regions where concentrations had been low in the 1990s, leading to a modest global increase in mean haemoglobin and a reduction in anaemia prevalence. Further improvements are needed in some regions, particularly south Asia and central and west Africa, to improve the health of women and children and achieve global targets for reducing anaemia. Funding Bill & Melinda Gates Foundation, Grand Challenges Canada, and the UK Medical Research Council.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biofortification of crops with seven mineral elements often lacking in human diets--iron, zinc, copper, calcium, magnesium, selenium and iodine.

              The diets of over two-thirds of the world's population lack one or more essential mineral elements. This can be remedied through dietary diversification, mineral supplementation, food fortification, or increasing the concentrations and/or bioavailability of mineral elements in produce (biofortification). This article reviews aspects of soil science, plant physiology and genetics underpinning crop biofortification strategies, as well as agronomic and genetic approaches currently taken to biofortify food crops with the mineral elements most commonly lacking in human diets: iron (Fe), zinc (Zn), copper (Cu), calcium (Ca), magnesium (Mg), iodine (I) and selenium (Se). Two complementary approaches have been successfully adopted to increase the concentrations of bioavailable mineral elements in food crops. First, agronomic approaches optimizing the application of mineral fertilizers and/or improving the solubilization and mobilization of mineral elements in the soil have been implemented. Secondly, crops have been developed with: increased abilities to acquire mineral elements and accumulate them in edible tissues; increased concentrations of 'promoter' substances, such as ascorbate, beta-carotene and cysteine-rich polypeptides which stimulate the absorption of essential mineral elements by the gut; and reduced concentrations of 'antinutrients', such as oxalate, polyphenolics or phytate, which interfere with their absorption. These approaches are addressing mineral malnutrition in humans globally.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Nutr
                Front Nutr
                Front. Nutr.
                Frontiers in Nutrition
                Frontiers Media S.A.
                2296-861X
                23 November 2020
                2020
                : 7
                : 596307
                Affiliations
                [1] 1Laboratoire de Biotechnologie et de Physiologie Végétales, Faculté des Sciences, Centre de Recherche BioBio, University Mohammed V in Rabat , Rabat, Morocco
                [2] 2International Center for Agricultural Research in the Dry Areas (ICARDA) , Rabat, Morocco
                [3] 3International Center for Agricultural Research in the Dry Areas (ICARDA) , Terbol, Lebanon
                [4] 4Plant and Environmental Sciences, Pulse Quality and Organic Breeding, Clemson University , Clemson, SC, United States
                Author notes

                Edited by: Kannan R.R. Rengasamy, North-West University, South Africa

                Reviewed by: Ramesh Kumar Saini, Konkuk University, South Korea; Debjyoti Sen Gupta, Indian Institute of Pulses Research (ICAR), India

                *Correspondence: Shiv Kumar sk.agrawal@ 123456cgiar.org

                This article was submitted to Nutrition and Food Science Technology, a section of the journal Frontiers in Nutrition

                Article
                10.3389/fnut.2020.596307
                7719779
                33330596
                26efdd4b-a099-44e1-b9cd-8e86eafdfac2
                Copyright © 2020 Choukri, Hejjaoui, El-Baouchi, El haddad, Smouni, Maalouf, Thavarajah and Kumar.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 August 2020
                : 28 October 2020
                Page count
                Figures: 5, Tables: 9, Equations: 0, References: 77, Pages: 14, Words: 10502
                Categories
                Nutrition
                Original Research

                lentil,malnutrition,biofortification,heat,combined heat-drought,crude protein,iron and zinc,grain yield

                Comments

                Comment on this article