2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Etoposide: A rider on the cytokine storm

      Cytokine

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          The extracellular release of HMGB1 during apoptotic cell death.

          High mobility group box 1 protein (HMGB1) is a non-histone nuclear protein with dual function. Inside the cell, HMGB1 binds DNA and regulates transcription, whereas outside the cell, it serves as a cytokine and mediates the late effects of LPS. The movement of HMGB1 into the extracellular space has been demonstrated for macrophages stimulated with LPS as well as cells undergoing necrosis but not apoptosis. The differential release of HMGB1 during death processes could reflect the structure of chromatin in these settings as well as the mechanisms for HMGB1 translocation. Since apoptotic cells can release some nuclear molecules such as DNA to which HMGB1 can bind, we therefore investigated whether HMGB1 release can occur during apoptosis as well as necrosis. For this purpose, Jurkat cells were treated with chemical inducers of apoptosis (staurosporine, etoposide, or camptothecin), and HMGB1 release into the medium was assessed by Western blotting. Results of these experiments indicate that HMGB1 appears in the media of apoptotic Jurkat cells in a time-dependent manner and that this release can be reduced by Z-VAD-fmk. Panc-1 and U937 cells treated with these agents showed similar release. In addition, HeLa cells induced to undergo apoptosis showed HMGB1 release. Furthermore, we showed using confocal microscopy that HMGB1 and DNA change their nuclear location in Jurkat cells undergoing apoptosis. Together, these studies indicate that HMGB1 release can occur during the course of apoptosis as well as necrosis and suggest that the release process may vary with cell type.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            cGAS/STING axis mediates a topoisomerase II inhibitor–induced tumor immunogenicity

            Checkpoint blockade antibodies have been approved as immunotherapy for multiple types of cancer, but the response rate and efficacy are still limited. There are few immunogenic cell death–inducing (ICD-inducing) drugs available that can kill cancer cells, enhance tumor immunogenicity, increase in vivo immune infiltration, and thereby boost a tumor response to immunotherapy. So far, the ICD markers have been identified as the few immunostimulating characteristics of dead cells, but whether the presence of such ICD markers on tumor cells translates into enhanced antitumor immunity in vivo is still being investigated. To identify anticancer drugs that could induce tumor cell death and boost T cell response, we performed drug screenings based on both an ICD reporter assay and a T cell activation assay. We showed that teniposide, a DNA topoisomerase II inhibitor, could induce high-mobility group box 1 (HMGB1) release and type I IFN signaling in tumor cells and that teniposide-treated tumor cells could activate antitumor T cell response both in vitro and in vivo. Mechanistically, teniposide induced tumor cell DNA damage and innate immune signaling, including NF-κB activation and stimulator of IFN genes–dependent (STING-dependent) type I IFN signaling, both of which contribute to the activation of dendritic cells and subsequent T cells. Furthermore, teniposide potentiated the antitumor efficacy of anti-PD1 in multiple types of mouse tumor models. Our findings showed that teniposide could trigger tumor immunogenicity and enabled a potential chemoimmunotherapeutic approach to potentiating the therapeutic efficacy of anti-PD1 immunotherapy.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Interleukin-8: A chemokine at the intersection of cancer plasticity, angiogenesis, and immune suppression

                Bookmark

                Author and article information

                Journal
                Cytokine
                Cytokine
                10434666
                August 2023
                August 2023
                : 168
                : 156234
                Article
                10.1016/j.cyto.2023.156234
                26d39de4-a53e-41e4-9021-125614ac19ce
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://www.elsevier.com/open-access/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article