49
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Use of the Instantaneous Wave-free Ratio or Fractional Flow Reserve in PCI

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      New England Journal of Medicine
      Massachusetts Medical Society

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coronary revascularization guided by fractional flow reserve (FFR) is associated with better patient outcomes after the procedure than revascularization guided by angiography alone. It is unknown whether the instantaneous wave-free ratio (iFR), an alternative measure that does not require the administration of adenosine, will offer benefits similar to those of FFR.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Rivaroxaban versus warfarin in nonvalvular atrial fibrillation.

          The use of warfarin reduces the rate of ischemic stroke in patients with atrial fibrillation but requires frequent monitoring and dose adjustment. Rivaroxaban, an oral factor Xa inhibitor, may provide more consistent and predictable anticoagulation than warfarin. In a double-blind trial, we randomly assigned 14,264 patients with nonvalvular atrial fibrillation who were at increased risk for stroke to receive either rivaroxaban (at a daily dose of 20 mg) or dose-adjusted warfarin. The per-protocol, as-treated primary analysis was designed to determine whether rivaroxaban was noninferior to warfarin for the primary end point of stroke or systemic embolism. In the primary analysis, the primary end point occurred in 188 patients in the rivaroxaban group (1.7% per year) and in 241 in the warfarin group (2.2% per year) (hazard ratio in the rivaroxaban group, 0.79; 95% confidence interval [CI], 0.66 to 0.96; P<0.001 for noninferiority). In the intention-to-treat analysis, the primary end point occurred in 269 patients in the rivaroxaban group (2.1% per year) and in 306 patients in the warfarin group (2.4% per year) (hazard ratio, 0.88; 95% CI, 0.74 to 1.03; P<0.001 for noninferiority; P=0.12 for superiority). Major and nonmajor clinically relevant bleeding occurred in 1475 patients in the rivaroxaban group (14.9% per year) and in 1449 in the warfarin group (14.5% per year) (hazard ratio, 1.03; 95% CI, 0.96 to 1.11; P=0.44), with significant reductions in intracranial hemorrhage (0.5% vs. 0.7%, P=0.02) and fatal bleeding (0.2% vs. 0.5%, P=0.003) in the rivaroxaban group. In patients with atrial fibrillation, rivaroxaban was noninferior to warfarin for the prevention of stroke or systemic embolism. There was no significant between-group difference in the risk of major bleeding, although intracranial and fatal bleeding occurred less frequently in the rivaroxaban group. (Funded by Johnson & Johnson and Bayer; ROCKET AF ClinicalTrials.gov number, NCT00403767.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Apixaban versus Warfarin in Patients with Atrial Fibrillation

            Vitamin K antagonists are highly effective in preventing stroke in patients with atrial fibrillation but have several limitations. Apixaban is a novel oral direct factor Xa inhibitor that has been shown to reduce the risk of stroke in a similar population in comparison with aspirin. In this randomized, double-blind trial, we compared apixaban (at a dose of 5 mg twice daily) with warfarin (target international normalized ratio, 2.0 to 3.0) in 18,201 patients with atrial fibrillation and at least one additional risk factor for stroke. The primary outcome was ischemic or hemorrhagic stroke or systemic embolism. The trial was designed to test for noninferiority, with key secondary objectives of testing for superiority with respect to the primary outcome and to the rates of major bleeding and death from any cause. The median duration of follow-up was 1.8 years. The rate of the primary outcome was 1.27% per year in the apixaban group, as compared with 1.60% per year in the warfarin group (hazard ratio with apixaban, 0.79; 95% confidence interval [CI], 0.66 to 0.95; P<0.001 for noninferiority; P=0.01 for superiority). The rate of major bleeding was 2.13% per year in the apixaban group, as compared with 3.09% per year in the warfarin group (hazard ratio, 0.69; 95% CI, 0.60 to 0.80; P<0.001), and the rates of death from any cause were 3.52% and 3.94%, respectively (hazard ratio, 0.89; 95% CI, 0.80 to 0.99; P=0.047). The rate of hemorrhagic stroke was 0.24% per year in the apixaban group, as compared with 0.47% per year in the warfarin group (hazard ratio, 0.51; 95% CI, 0.35 to 0.75; P<0.001), and the rate of ischemic or uncertain type of stroke was 0.97% per year in the apixaban group and 1.05% per year in the warfarin group (hazard ratio, 0.92; 95% CI, 0.74 to 1.13; P=0.42). In patients with atrial fibrillation, apixaban was superior to warfarin in preventing stroke or systemic embolism, caused less bleeding, and resulted in lower mortality. (Funded by Bristol-Myers Squibb and Pfizer; ARISTOTLE ClinicalTrials.gov number, NCT00412984.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fractional flow reserve versus angiography for guiding percutaneous coronary intervention.

              In patients with multivessel coronary artery disease who are undergoing percutaneous coronary intervention (PCI), coronary angiography is the standard method for guiding the placement of the stent. It is unclear whether routine measurement of fractional flow reserve (FFR; the ratio of maximal blood flow in a stenotic artery to normal maximal flow), in addition to angiography, improves outcomes. In 20 medical centers in the United States and Europe, we randomly assigned 1005 patients with multivessel coronary artery disease to undergo PCI with implantation of drug-eluting stents guided by angiography alone or guided by FFR measurements in addition to angiography. Before randomization, lesions requiring PCI were identified on the basis of their angiographic appearance. Patients assigned to angiography-guided PCI underwent stenting of all indicated lesions, whereas those assigned to FFR-guided PCI underwent stenting of indicated lesions only if the FFR was 0.80 or less. The primary end point was the rate of death, nonfatal myocardial infarction, and repeat revascularization at 1 year. The mean (+/-SD) number of indicated lesions per patient was 2.7+/-0.9 in the angiography group and 2.8+/-1.0 in the FFR group (P=0.34). The number of stents used per patient was 2.7+/-1.2 and 1.9+/-1.3, respectively (P<0.001). The 1-year event rate was 18.3% (91 patients) in the angiography group and 13.2% (67 patients) in the FFR group (P=0.02). Seventy-eight percent of the patients in the angiography group were free from angina at 1 year, as compared with 81% of patients in the FFR group (P=0.20). Routine measurement of FFR in patients with multivessel coronary artery disease who are undergoing PCI with drug-eluting stents significantly reduces the rate of the composite end point of death, nonfatal myocardial infarction, and repeat revascularization at 1 year. (ClinicalTrials.gov number, NCT00267774.) 2009 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                New England Journal of Medicine
                N Engl J Med
                Massachusetts Medical Society
                0028-4793
                1533-4406
                May 11 2017
                May 11 2017
                : 376
                : 19
                : 1824-1834
                Article
                10.1056/NEJMoa1700445
                28317458
                26c7afc2-8db2-4d44-a3e6-2aa6e5306ad3
                © 2017
                History

                Comments

                Comment on this article