9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BACKGROUND

          Mesenchymal stromal/stem cells (MSCs) constitute a promising tool in regenerative medicine and can be isolated from different human tissues. However, their biological properties are still not fully characterized. Whereas MSCs from different tissue exhibit many common characteristics, their biological activity and some markers are different and depend on their tissue of origin. Understanding the factors that underlie MSC biology should constitute important points for consideration for researchers interested in clinical MSC application.

          AIM

          To characterize the biological activity of MSCs during longterm culture isolated from: bone marrow (BM-MSCs), adipose tissue (AT-MSCs), skeletal muscles (SM-MSCs), and skin (SK-MSCs).

          METHODS

          MSCs were isolated from the tissues, cultured for 10 passages, and assessed for: phenotype with immunofluorescence and flow cytometry, multipotency with differentiation capacity for osteo-, chondro-, and adipogenesis, stemness markers with qPCR for mRNA for Sox2 and Oct4, and genetic stability for p53 and c-Myc; 27 bioactive factors were screened using the multiplex ELISA array, and spontaneous fusion involving a co-culture of SM-MSCs with BM-MSCs or AT-MSCs stained with PKH26 (red) or PKH67 (green) was performed.

          RESULTS

          All MSCs showed the basic MSC phenotype; however, their expression decreased during the follow-up period, as confirmed by fluorescence intensity. The examined MSCs express CD146 marker associated with proangiogenic properties; however their expression decreased in AT-MSCs and SM-MSCs, but was maintained in BM-MSCs. In contrast, in SK-MSCs CD146 expression increased in late passages. All MSCs, except BM-MSCs, expressed PW1, a marker associated with differentiation capacity and apoptosis. BM-MSCs and AT-MSCs expressed stemness markers Sox2 and Oct4 in long-term culture. All MSCs showed a stable p53 and c-Myc expression. BM-MSCs and AT-MSCs maintained their differentiation capacity during the follow-up period. In contrast, SK-MSCs and SM-MSCs had a limited ability to differentiate into adipocytes. BM-MSCs and AT-MSCs revealed similarities in phenotype maintenance, capacity for multilineage differentiation, and secretion of bioactive factors. Because AT-MSCs fused with SM-MSCs as effectively as BM-MSCs, AT-MSCs may constitute an alternative source for BM-MSCs.

          CONCLUSION

          Long-term culture affects the biological activity of MSCs obtained from various tissues. The source of MSCs and number of passages are important considerations in regenerative medicine.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms

          The alternatively activated or M2 macrophages are immune cells with high phenotypic heterogeneity and are governing functions at the interface of immunity, tissue homeostasis, metabolism, and endocrine signaling. Today the M2 macrophages are identified based on the expression pattern of a set of M2 markers. These markers are transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. This review discusses whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions. Also, it provides an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation. The possible evolutionary roots of the M2 macrophage functions are also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Concise review: the surface markers and identity of human mesenchymal stem cells.

            The concept of mesenchymal stem cells (MSCs) is becoming increasingly obscure due to the recent findings of heterogeneous populations with different levels of stemness within MSCs isolated by traditional plastic adherence. MSCs were originally identified in bone marrow and later detected in many other tissues. Currently, no cloning based on single surface marker is capable of isolating cells that satisfy the minimal criteria of MSCs from various tissue environments. Markers that associate with the stemness of MSCs await to be elucidated. A number of candidate MSC surface markers or markers possibly related to their stemness have been brought forward so far, including Stro-1, SSEA-4, CD271, and CD146, yet there is a large difference in their expression in various sources of MSCs. The exact identity of MSCs in vivo is not yet clear, although reports have suggested they may have a fibroblastic or pericytic origin. In this review, we revisit the reported expression of surface molecules in MSCs from various sources, aiming to assess their potential as MSC markers and define the critical panel for future investigation. We also discuss the relationship of MSCs to fibroblasts and pericytes in an attempt to shed light on their identity in vivo. © 2014 AlphaMed Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transcriptional regulation of nanog by OCT4 and SOX2.

              Nanog, Sox2, and Oct4 are transcription factors all essential to maintaining the pluripotent embryonic stem cell phenotype. Through a cooperative interaction, Sox2 and Oct4 have previously been described to drive pluripotent-specific expression of a number of genes. We now extend the list of Sox2-Oct4 target genes to include Nanog. Within the Nanog proximal promoter, we identify a composite sox-oct cis-regulatory element essential for Nanog pluripotent transcription. This element is conserved over 250 million years of cumulative evolution within the eutherian mammals. A Nanog proximal promoter-EGFP (enhanced green fluorescent protein) reporter transgene recapitulates endogenous Nanog mRNA expression in embryonic stem cells and their differentiated derivatives. Sox2 and Oct4 interaction with the Nanog promoter was confirmed through mutagenesis and in vitro binding assays. Electrophoretic mobility shift assays indicate that the Sox2-Oct4 heterodimer forms more efficiently on the composite element within Nanog than the similar element within Fgf4. Using chromatin immunoprecipitation, we show that Oct4 and Sox2 bind to the Nanog promoter in living mouse and human embryonic stem cells. Furthermore, by specific knockdown of Oct4 and Sox2 mRNA by RNA interference in embryonic stem cells, we provide genetic evidence for a link between Oct4, Sox2, and the Nanog promoter. These studies extend the understanding of the pluripotent genetic regulatory network within which the Sox2-Oct4 complex are at the top of the regulatory hierarchy.
                Bookmark

                Author and article information

                Contributors
                Journal
                World J Stem Cells
                WJSC
                World Journal of Stem Cells
                Baishideng Publishing Group Inc
                1948-0210
                26 June 2019
                26 June 2019
                : 11
                : 6
                : 347-374
                Affiliations
                Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
                Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
                Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
                Department of Forensic Medicine, Wroclaw Medical University, Wroclaw 50-345, Poland
                Department of Forensic Medicine, Wroclaw Medical University, Wroclaw 50-345, Poland
                Faculty of Health Science, Department of Physiotherapy, Wroclaw Medical University, Wroclaw 50-367, Poland
                Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland. aleksandra.klimczak@ 123456hirszfeld.pl
                Author notes

                Author contributions: Kozlowska U performed the majority of experiments, analyzed the data, and wrote the paper; Krawczenko A, and Futoma K contributed to experiment preparation and acquisition and interpretation of data; Jurek T, Rorat M, and Patrzalek D contributed to material and data acquisition; Klimczak A designed the study, analyzed data, and wrote the paper.

                Supported by the National Science Center, No. N407121940; and by the Wroclaw Centre of Biotechnology, the Leading National Research Centre (KNOW) program for the years 2014-2018 .

                Corresponding author: Aleksandra Klimczak, DSc, PhD, Associate Professor, Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Rudolfa Weigla 12 Street, Wroclaw 53-114, Poland. aleksandra.klimczak@ 123456hirszfeld.pl

                Telephone: +48-71-3371172 Fax: +48-71-3372171

                Article
                jWJSC.v11.i6.pg347
                10.4252/wjsc.v11.i6.347
                6600850
                31293717
                26c2536e-2d8d-4aeb-b84a-1f4cf4f96187
                ©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

                This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial.

                History
                : 27 October 2018
                : 3 December 2018
                : 26 January 2019
                Categories
                Basic Study

                mesenchymal stem/progenitor cells,bone marrow mscs,adipose tissue mscs,muscle-derived mscs,skin-derived mscs,cytokines and trophic factors of mscs,spontaneous fusion of mscs

                Comments

                Comment on this article