38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Differentiation of Amnestic Type MCI from the Non-Amnestic Types by Structural MRI

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction: While amnestic mild cognitive impairment (aMCI) and non-amnestic mild cognitive impairment (naMCI) are theoretically different entities, only a few investigations studied the structural brain differences between these subtypes of mild cognitive impairment. The aim of the study was to find the structural differences between aMCI and naMCI, and to replicate previous findings on the differentiation between aMCI and healthy controls.

          Methods: Altogether 62 aMCI, naMCI, and healthy control subjects were included into the study based on the Petersen criteria. All patients underwent a routine brain MR examination, and a detailed neuropsychological examination.

          Results: The sizes of the hippocampus, the entorhinal cortex and the amygdala were decreased in aMCI relative to naMCI and to controls. Furthermore the cortical thickness of the entorhinal cortex, the fusiform gyrus, the precuneus and the isthmus of the cingulate gyrus were significantly decreased in aMCI relative to naMCI and healthy controls. The largest differences relative to controls were detected for the volume of the hippocampus (18% decrease vs. controls) and the cortical thickness (20% decrease vs. controls) of the entorhinal cortex: 1.6 and 1.4 in terms of Cohen's d. Only the volume of the precuneus were decreased in the naMCI group (5% decrease) compared to the control subjects: 0.9 in terms of Cohen's d. Significant between group differences were also found in the neuropsychological test results: a decreased anterograde, retrograde memory, and category fluency performance was detected in the aMCI group relative to controls and naMCI subjects. Subjects with naMCI showed decreased letter fluency relative to controls, while both MCI groups showed decreased executive functioning relative to controls as measured by the Trail Making test part B. Memory performance in the aMCI group and in the entire sample correlated with the thickness of the entorhinal cortex and with the volume of the amygdala.

          Conclusion: The amnestic mild cognitive impairment/non-amnestic mild cognitive impairment separation is not only theoretical but backed by structural imaging methods and neuropsychological tests. A better knowledge of the MCI subtypes can help to predict the direction of progression and create targeted prevention.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          A hybrid approach to the skull stripping problem in MRI.

          We present a novel skull-stripping algorithm based on a hybrid approach that combines watershed algorithms and deformable surface models. Our method takes advantage of the robustness of the former as well as the surface information available to the latter. The algorithm first localizes a single white matter voxel in a T1-weighted MRI image, and uses it to create a global minimum in the white matter before applying a watershed algorithm with a preflooding height. The watershed algorithm builds an initial estimate of the brain volume based on the three-dimensional connectivity of the white matter. This first step is robust, and performs well in the presence of intensity nonuniformities and noise, but may erode parts of the cortex that abut bright nonbrain structures such as the eye sockets, or may remove parts of the cerebellum. To correct these inaccuracies, a surface deformation process fits a smooth surface to the masked volume, allowing the incorporation of geometric constraints into the skull-stripping procedure. A statistical atlas, generated from a set of accurately segmented brains, is used to validate and potentially correct the segmentation, and the MRI intensity values are locally re-estimated at the boundary of the brain. Finally, a high-resolution surface deformation is performed that accurately matches the outer boundary of the brain, resulting in a robust and automated procedure. Studies by our group and others outperform other publicly available skull-stripping tools. Copyright 2004 Elsevier Inc.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Geriatric Depression Scale.

            J Yesavage (1988)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-resolution intersubject averaging and a coordinate system for the cortical surface.

              The neurons of the human cerebral cortex are arranged in a highly folded sheet, with the majority of the cortical surface area buried in folds. Cortical maps are typically arranged with a topography oriented parallel to the cortical surface. Despite this unambiguous sheetlike geometry, the most commonly used coordinate systems for localizing cortical features are based on 3-D stereotaxic coordinates rather than on position relative to the 2-D cortical sheet. In order to address the need for a more natural surface-based coordinate system for the cortex, we have developed a means for generating an average folding pattern across a large number of individual subjects as a function on the unit sphere and of nonrigidly aligning each individual with the average. This establishes a spherical surface-based coordinate system that is adapted to the folding pattern of each individual subject, allowing for much higher localization accuracy of structural and functional features of the human brain.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Aging Neurosci
                Front Aging Neurosci
                Front. Aging Neurosci.
                Frontiers in Aging Neuroscience
                Frontiers Media S.A.
                1663-4365
                30 March 2016
                2016
                : 8
                : 52
                Affiliations
                [1] 1Department of Psychiatry and Psychotherapy, Semmelweis University Budapest, Hungary
                [2] 2Department of Neurology, National Institute of Clinical Neurosciences Budapest, Hungary
                [3] 3Department of Neurology, Hospital at Péterfy Sándor Street Budapest, Hungary
                [4] 4Magnetic Resonance Imaging Research Center, Semmelweis University Budapest, Hungary
                Author notes

                Edited by: Manuel Menéndez-González, Hospital Universitario Central de Asturias, Spain

                Reviewed by: Baxter P. Rogers, Vanderbilt University, USA; Ramesh Kandimalla, Emory University, USA

                *Correspondence: Gábor Csukly csukly.gabor@ 123456med.semmelweis-univ.hu
                Article
                10.3389/fnagi.2016.00052
                4811920
                27065855
                268e5ed3-1b68-4be7-8b03-833ecd1e92e7
                Copyright © 2016 Csukly, Sirály, Fodor, Horváth, Salacz, Hidasi, Csibri, Rudas and Szabó.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 December 2015
                : 29 February 2016
                Page count
                Figures: 2, Tables: 4, Equations: 0, References: 46, Pages: 10, Words: 7409
                Categories
                Neuroscience
                Original Research

                Neurosciences
                mild cognitive impairment,amnestic,non-amnestic,mri,neuropsychological test
                Neurosciences
                mild cognitive impairment, amnestic, non-amnestic, mri, neuropsychological test

                Comments

                Comment on this article