33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Fragaria : A genus with deep historical roots and ripe for evolutionary and ecological insights

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cultivated strawberry, Fragaria ×ananassa, is one of the youngest domesticated plants. Its 18th century origin via hybridization in Europe between the North American F. virginiana and the South American F. chiloensis was documented by the botanist Antoine Nicolas Duchesne. His 1766 "Natural History of Strawberries" is an extraordinary work that integrates fundamental discoveries on the biology, ecology, and phylogeny of Fragaria with applied information on cultivation and ethnobotanical uses, serving as an inspiration for current research in the genus. Fragaria species exhibit the full range of sexual systems in the gynodioecy pathway from hermaphroditism to dioecy (and back again), as well as variation in self-compatibility, and evidence of sex chromosomes with female heterogamety. The genus is also characterized by interspecific hybridization and polyploidy, with a natural range of ploidy levels from diploids to decaploids. This biological diversity, combined with the availability of genomic resources and the ease of growing and experimenting with the plants, makes Fragaria a very attractive system for ecological and evolutionary genomics. The goal of this review is to introduce Fragaria as a model genus and to provide a roadmap for future integrative research. These research directions will deepen our understanding of the ecological and evolutionary context that shaped the ancestors of the cultivated strawberry, not only providing information that can be applied to efforts to shape the future of this important fruit crop but also our understanding of key transitions in plant evolution.

          Related collections

          Most cited references160

          • Record: found
          • Abstract: found
          • Article: not found

          Polyploidy and genome evolution in plants.

          Genome doubling (polyploidy) has been and continues to be a pervasive force in plant evolution. Modern plant genomes harbor evidence of multiple rounds of past polyploidization events, often followed by massive silencing and elimination of duplicated genes. Recent studies have refined our inferences of the number and timing of polyploidy events and the impact of these events on genome structure. Many polyploids experience extensive and rapid genomic alterations, some arising with the onset of polyploidy. Survivorship of duplicated genes are differential across gene classes, with some duplicate genes more prone to retention than others. Recent theory is now supported by evidence showing that genes that are retained in duplicate typically diversify in function or undergo subfunctionalization. Polyploidy has extensive effects on gene expression, with gene silencing accompanying polyploid formation and continuing over evolutionary time.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ancestral polyploidy in seed plants and angiosperms.

            Whole-genome duplication (WGD), or polyploidy, followed by gene loss and diploidization has long been recognized as an important evolutionary force in animals, fungi and other organisms, especially plants. The success of angiosperms has been attributed, in part, to innovations associated with gene or whole-genome duplications, but evidence for proposed ancient genome duplications pre-dating the divergence of monocots and eudicots remains equivocal in analyses of conserved gene order. Here we use comprehensive phylogenomic analyses of sequenced plant genomes and more than 12.6 million new expressed-sequence-tag sequences from phylogenetically pivotal lineages to elucidate two groups of ancient gene duplications-one in the common ancestor of extant seed plants and the other in the common ancestor of extant angiosperms. Gene duplication events were intensely concentrated around 319 and 192 million years ago, implicating two WGDs in ancestral lineages shortly before the diversification of extant seed plants and extant angiosperms, respectively. Significantly, these ancestral WGDs resulted in the diversification of regulatory genes important to seed and flower development, suggesting that they were involved in major innovations that ultimately contributed to the rise and eventual dominance of seed plants and angiosperms. ©2011 Macmillan Publishers Limited. All rights reserved
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing.

              Most eukaryotes have genomes that exhibit high levels of gene redundancy, much of which seems to have arisen from one or more cycles of genome doubling. Polyploidy has been particularly prominent during flowering plant evolution, yielding duplicated genes (homoeologs) whose expression may be retained or lost either as an immediate consequence of polyploidization or on an evolutionary timescale. Expression of 40 homoeologous gene pairs was assayed by cDNA-single-stranded conformation polymorphism in natural (1- to 2-million-yr-old) and synthetic tetraploid cotton (Gossypium) to determine whether homoeologous gene pairs are expressed at equal levels after polyploid formation. Silencing or unequal expression of one homoeolog was documented for 10 of 40 genes examined in ovules of Gossypium hirsutum. Assays of homoeolog expression in 10 organs revealed variable expression levels and silencing, depending on the gene and organ examined. Remarkably, silencing and biased expression of some gene pairs are reciprocal and developmentally regulated, with one homoeolog showing silencing in some organs and the other being silenced in other organs, suggesting rapid subfunctionalization. Duplicate gene expression was examined in additional natural polyploids to characterize the pace at which expression alteration evolves. Analysis of a synthetic tetraploid revealed homoeolog expression and silencing patterns that sometimes mirrored those of the natural tetraploid. Both long-term and immediate responses to polyploidization were implicated. Data suggest that some silencing events are epigenetically induced during the allopolyploidization process.
                Bookmark

                Author and article information

                Journal
                American Journal of Botany
                American Journal of Botany
                Botanical Society of America
                0002-9122
                1537-2197
                October 2014
                October 2014
                October 2014
                : 101
                : 10
                : 1686-1699
                Affiliations
                [1 ]Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 USA
                [2 ]Pacific Northwest Research Station, USDA Forest Service, Corvallis, Oregon 97331 USA
                [3 ]Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 USA
                Article
                10.3732/ajb.1400140
                25326614
                26817ccd-106e-4a76-ad9a-aef0d08b2508
                © 2014

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article