Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
103
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      UTX and UTY Demonstrate Histone Demethylase-Independent Function in Mouse Embryonic Development

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          UTX (KDM6A) and UTY are homologous X and Y chromosome members of the Histone H3 Lysine 27 (H3K27) demethylase gene family. UTX can demethylate H3K27; however, in vitro assays suggest that human UTY has lost enzymatic activity due to sequence divergence. We produced mouse mutations in both Utx and Uty. Homozygous Utx mutant female embryos are mid-gestational lethal with defects in neural tube, yolk sac, and cardiac development. We demonstrate that mouse UTY is devoid of in vivo demethylase activity, so hemizygous X Utx− Y + mutant male embryos should phenocopy homozygous X Utx− X Utx− females. However, X Utx− Y + mutant male embryos develop to term; although runted, approximately 25% survive postnatally reaching adulthood. Hemizygous X + Y Uty− mutant males are viable. In contrast, compound hemizygous X Utx− Y Uty− males phenocopy homozygous X Utx− X Utx− females. Therefore, despite divergence of UTX and UTY in catalyzing H3K27 demethylation, they maintain functional redundancy during embryonic development. Our data suggest that UTX and UTY are able to regulate gene activity through demethylase independent mechanisms. We conclude that UTX H3K27 demethylation is non-essential for embryonic viability.

          Author Summary

          Trimethylation at Lysine 27 of histone H3 (H3K27me3) establishes a repressive chromatin state in silencing an array of crucial developmental genes. Polycomb repressive complex 2 (PRC2) catalyzes this precise posttranslational modification and is required in several critical aspects of development including Hox gene repression, gastrulation, X-chromosome inactivation, mono-allelic gene expression and imprinting, stem cell maintenance, and oncogenesis. Removal of H3K27 trimethylation has been proposed to be a mechanistic switch to activate large sets of genes in differentiating cells. Mouse Utx is an X-linked H3K27 demethylase that is essential for embryonic development. We now demonstrate that Uty, the Y-chromosome homolog of Utx, has overlapping redundancy with Utx in embryonic development. Mouse UTY has a polymorphism in the JmjC demethylase domain that renders the protein incapable of H3K27 demethylation. Therefore, the overlapping function of UTX and UTY in embryonic development is due to H3K27 demethylase independent mechanism. Moreover, the presence of UTY allows UTX-deficient mouse embryos to survive until birth. Thus, UTX H3K27 demethylation is not essential for embryonic viability. These intriguing results raise new questions on how H3K27me3 repression is removed in the early embryo.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          The diverse functions of histone lysine methylation.

          Covalent modifications of histone tails have fundamental roles in chromatin structure and function. One such modification, lysine methylation, has important functions in many biological processes that include heterochromatin formation, X-chromosome inactivation and transcriptional regulation. Here, we summarize recent advances in our understanding of how lysine methylation functions in these diverse biological processes, and raise questions that need to be addressed in the future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development.

            The trithorax and the polycomb group proteins are chromatin modifiers, which play a key role in the epigenetic regulation of development, differentiation and maintenance of cell fates. The polycomb repressive complex 2 (PRC2) mediates transcriptional repression by catalysing the di- and tri-methylation of Lys 27 on histone H3 (H3K27me2/me3). Owing to the essential role of the PRC2 complex in repressing a large number of genes involved in somatic processes, the H3K27me3 mark is associated with the unique epigenetic state of stem cells. The rapid decrease of the H3K27me3 mark during specific stages of embryogenesis and stem-cell differentiation indicates that histone demethylases specific for H3K27me3 may exist. Here we show that the human JmjC-domain-containing proteins UTX and JMJD3 demethylate tri-methylated Lys 27 on histone H3. Furthermore, we demonstrate that ectopic expression of JMJD3 leads to a strong decrease of H3K27me3 levels and causes delocalization of polycomb proteins in vivo. Consistent with the strong decrease in H3K27me3 levels associated with HOX genes during differentiation, we show that UTX directly binds to the HOXB1 locus and is required for its activation. Finally mutation of F18E9.5, a Caenorhabditis elegans JMJD3 orthologue, or inhibition of its expression, results in abnormal gonad development. Taken together, these results suggest that H3K27me3 demethylation regulated by UTX/JMJD3 proteins is essential for proper development. Moreover, the recent demonstration that UTX associates with the H3K4me3 histone methyltransferase MLL2 (ref. 8) supports a model in which the coordinated removal of repressive marks, polycomb group displacement, and deposition of activating marks are important for the stringent regulation of transcription during cellular differentiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Histone methyltransferase activity of a Drosophila Polycomb group repressor complex.

              Polycomb group (PcG) proteins maintain transcriptional repression during development, likely by creating repressive chromatin states. The Extra Sex Combs (ESC) and Enhancer of Zeste [E(Z)] proteins are partners in an essential PcG complex, but its full composition and biochemical activities are not known. A SET domain in E(Z) suggests this complex might methylate histones. We purified an ESC-E(Z) complex from Drosophila embryos and found four major subunits: ESC, E(Z), NURF-55, and the PcG repressor, SU(Z)12. A recombinant complex reconstituted from these four subunits methylates lysine-27 of histone H3. Mutations in the E(Z) SET domain disrupt methyltransferase activity in vitro and HOX gene repression in vivo. These results identify E(Z) as a PcG protein with enzymatic activity and implicate histone methylation in PcG-mediated silencing.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                September 2012
                September 2012
                27 September 2012
                : 8
                : 9
                : e1002964
                Affiliations
                [1 ]Department of Genetics, Carolina Center for Genome Sciences, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
                [2 ]RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama, Japan
                [3 ]Laboratory of Structural Biology and Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
                Stanford University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: KBS TM. Performed the experiments: KBS. Analyzed the data: KBS TS SY TM. Contributed reagents/materials/analysis tools: KBS TS SY TM. Wrote the paper: KBS TM.

                Article
                PGENETICS-D-12-00153
                10.1371/journal.pgen.1002964
                3459986
                23028370
                2679d75f-df0c-4ebd-ab84-06384963ab67
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 14 January 2012
                : 8 August 2012
                Page count
                Pages: 17
                Funding
                This work was funded by NIH GM101974, RR014817, and GM087905. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Developmental Biology
                Cell Differentiation
                Embryology
                Genomic Imprinting
                Genetics
                Epigenetics
                Genetic Mutation
                Model Organisms
                Animal Models
                Mouse
                Molecular Cell Biology
                Gene Expression
                Histone Modification

                Genetics
                Genetics

                Comments

                Comment on this article