128
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Páramo is the world's fastest evolving and coolest biodiversity hotspot

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Understanding the processes that cause speciation is a key aim of evolutionary biology. Lineages or biomes that exhibit recent and rapid diversification are ideal model systems for determining these processes. Species rich biomes reported to be of relatively recent origin, i.e., since the beginning of the Miocene, include Mediterranean ecosystems such as the California Floristic Province, oceanic islands such as the Hawaiian archipelago and the Neotropical high elevation ecosystem of the Páramos. Páramos constitute grasslands above the forest tree-line (at elevations of c. 2800–4700 m) with high species endemism. Organisms that occupy this ecosystem are a likely product of unique adaptations to an extreme environment that evolved during the last three to five million years when the Andes reached an altitude that was capable of sustaining this type of vegetation. We compared net diversification rates of lineages in fast evolving biomes using 73 dated molecular phylogenies. Based on our sample, we demonstrate that average net diversification rates of Páramo plant lineages are faster than those of other reportedly fast evolving hotspots and that the faster evolving lineages are more likely to be found in Páramos than the other hotspots. Páramos therefore represent the ideal model system for studying diversification processes. Most of the speciation events that we observed in the Páramos (144 out of 177) occurred during the Pleistocene possibly due to the effects of species range contraction and expansion that may have resulted from the well-documented climatic changes during that period. Understanding these effects will assist with efforts to determine how future climatic changes will impact plant populations.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          A significant upward shift in plant species optimum elevation during the 20th century.

          Spatial fingerprints of climate change on biotic communities are usually associated with changes in the distribution of species at their latitudinal or altitudinal extremes. By comparing the altitudinal distribution of 171 forest plant species between 1905 and 1985 and 1986 and 2005 along the entire elevation range (0 to 2600 meters above sea level) in west Europe, we show that climate warming has resulted in a significant upward shift in species optimum elevation averaging 29 meters per decade. The shift is larger for species restricted to mountain habitats and for grassy species, which are characterized by faster population turnover. Our study shows that climate change affects the spatial core of the distributional range of plant species, in addition to their distributional margins, as previously reported.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid shifts in plant distribution with recent climate change.

            A change in climate would be expected to shift plant distribution as species expand in newly favorable areas and decline in increasingly hostile locations. We compared surveys of plant cover that were made in 1977 and 2006-2007 along a 2,314-m elevation gradient in Southern California's Santa Rosa Mountains. Southern California's climate warmed at the surface, the precipitation variability increased, and the amount of snow decreased during the 30-year period preceding the second survey. We found that the average elevation of the dominant plant species rose by approximately 65 m between the surveys. This shift cannot be attributed to changes in air pollution or fire frequency and appears to be a consequence of changes in regional climate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Absolute diversification rates in angiosperm clades.

              The extraordinary contemporary species richness and ecological predominance of flowering plants (angiosperms) are even more remarkable when considering the relatively recent onset of their evolutionary diversification. We examine the evolutionary diversification of angiosperms and the observed differential distribution of species in angiosperm clades by estimating the rate of diversification for angiosperms as a whole and for a large set of angiosperm clades. We also identify angiosperm clades with a standing diversity that is either much higher or lower than expected, given the estimated background diversification rate. Recognition of angiosperm clades, the phylogenetic relationships among them, and their taxonomic composition are based on an empirical compilation of primary phylogenetic studies. By making an integrative and critical use of the paleobotanical record, we obtain reasonably secure approximations for the age of a large set of angiosperm clades. Diversification was modeled as a stochastic, time-homogeneous birth-and-death process that depends on the diversification rate (r) and the relative extinction rate (epsilon). A statistical analysis of the birth and death process was then used to obtain 95% confidence intervals for the expected number of species through time in a clade that diversifies at a rate equal to that of angiosperms as a whole. Confidence intervals were obtained for stem group and for crown group ages in the absence of extinction (e = 0.0) and under a high relative extinction rate (epsilon = 0.9). The standing diversity of angiosperm clades was then compared to expected species diversity according to the background rate of diversification, and, depending on their placement with respect to the calculated confidence intervals, exceedingly species-rich or exceedingly species-poor clades were identified. The rate of diversification for angiosperms as a whole ranges from 0.077 (epsilon = 0.9) to 0.089 (epsilon = 0.0) net speciation events per million years. Ten clades fall above the confidence intervals of expected species diversity, and 13 clades were found to be unexpectedly species poor. The phylogenetic distribution of clades with an exceedingly high number of species suggests that traits that confer high rates of diversification evolved independently in different instances and do not characterize the angiosperms as a whole.
                Bookmark

                Author and article information

                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                09 October 2013
                2013
                : 4
                : 192
                Affiliations
                [1] 1Laboratorio de Botánica y Sistemática, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá DC, Colombia
                [2] 2Evolutionary Biology Centre, Department of Plant Ecology and Genetics, Uppsala University Uppsala, Sweden
                [3] 3Tropical Diversity Section, Royal Botanic Garden Edinburgh Edinburgh, UK
                Author notes

                Edited by: Federico Luebert, Freie Universität Berlin, Germany

                Reviewed by: Christopher W. Dick, University of Michigan, USA; Petr Sklenar, Charles University, Czech Republic

                *Correspondence: Santiago Madriñán, Laboratorio de Botánica y Sistemática, Universidad de los Andes, Apartado Aéreo 4976, Bogotá, DC 111711, Colombia e-mail: samadrin@ 123456uniandes.edu.co

                This article was submitted to Evolutionary and Population Genetics, a section of the journal Frontiers in Genetics.

                Article
                10.3389/fgene.2013.00192
                3793228
                24130570
                265d4bff-a02e-48a1-9fca-aa76ee3fca43
                Copyright © 2013 Madriñán, Cortés and Richardson.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 May 2013
                : 08 September 2013
                Page count
                Figures: 3, Tables: 2, Equations: 0, References: 41, Pages: 7, Words: 5309
                Categories
                Genetics
                Original Research Article

                Genetics
                biodiversity hotspots,biogeography,evolutionary radiation,dated molecular phylogenies,net diversification rates,plant evolution,páramos

                Comments

                Comment on this article