101
views
0
recommends
+1 Recommend
0 collections
    0
    recommends
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insecticide Resistance in the Dengue Vector Aedes aegypti from Martinique: Distribution, Mechanisms and Relations with Environmental Factors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dengue is an important mosquito borne viral disease in Martinique Island (French West Indies). The viruses responsible for dengue are transmitted by Aedes aegypti, an indoor day-biting mosquito. The most effective proven method for disease prevention has been by vector control by various chemical or biological means. Unfortunately insecticide resistance has already been observed on the Island and recently showed to significantly reduce the efficacy of vector control interventions. In this study, we investigated the distribution of resistance and the underlying mechanisms in nine Ae. aegypti populations. Statistical multifactorial approach was used to investigate the correlations between insecticide resistance levels, associated mechanisms and environmental factors characterizing the mosquito populations. Bioassays revealed high levels of resistance to temephos and deltamethrin and susceptibility to Bti in the 9 populations tested. Biochemical assays showed elevated detoxification enzyme activities of monooxygenases, carboxylesterases and glutathione S-tranferases in most of the populations. Molecular screening for common insecticide target-site mutations, revealed the presence of the “knock-down resistance” V1016I Kdr mutation at high frequency (>87%). Real time quantitative RT-PCR showed the potential involvement of several candidate detoxification genes in insecticide resistance. Principal Component Analysis (PCA) performed with variables characterizing Ae. aegypti from Martinique permitted to underline potential links existing between resistance distribution and other variables such as agriculture practices, vector control interventions and urbanization. Insecticide resistance is widespread but not homogeneously distributed across Martinique. The influence of environmental and operational factors on the evolution of the resistance and mechanisms are discussed.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: not found
          • Article: not found

          Probit analysis

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The molecular basis of insecticide resistance in mosquitoes.

            Insecticide resistance is an inherited characteristic involving changes in one or more insect gene. The molecular basis of these changes are only now being fully determined, aided by the availability of the Drosophila melanogaster and Anopheles gambiae genome sequences. This paper reviews what is currently known about insecticide resistance conferred by metabolic or target site changes in mosquitoes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of agricultural use of insecticides in resistance to pyrethroids in Anopheles gambiae s.l. in Burkina Faso.

              Agricultural use of insecticides is involved in the selection of resistance to these compounds in field populations of mosquitoes in Burkina Faso. Anopheles gambiae s.l. was resistant to permethrin and DDT in cotton-growing and urban areas, but susceptible in areas with limited insecticide selection pressure (rice fields and control areas). Nevertheless, resistance to these insecticides was observed in a village on the outskirts of the rice fields at the end of the rainy season, suggesting that the latter population of mosquitoes had migrated from the surrounding cotton villages into the rice fields. A seasonal variation of resistance observed in the cotton-growing area is related to the distribution of the molecular M and S forms of An. gambiae, since resistance to pyrethroids has so far only been reported in the S form. Pyrethroid resistance in west African An. gambiae was conferred by target site insensitivity through a knockdown resistance (kdr)-like mutation, which was present at high frequencies in mosquitoes in the cotton-growing and urban areas.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                21 February 2012
                : 7
                : 2
                : e30989
                Affiliations
                [1 ]Unité Mixte de Recherche MIVEGEC (UM1-CNRS 5290-IRD 224), Institut de Recherche pour le Développement (IRD), Montpellier, France
                [2 ]Laboratoire d'Ecologie Alpine (LECA), UMR 5553 CNRS-Université de Grenoble, Grenoble, France
                [3 ]Centre de la Démoustication, Conseil General de la Martinique, Martinique, France
                [4 ]Centre de Recherche Entomologique de Cotonou (CREC), Institut de Recherche pour le Développement (IRD), Cotonou, Benin
                New Mexico State University, United States of America
                Author notes

                Conceived and designed the experiments: SM SR AY VC JPD FC. Performed the experiments: SM RBM NP MAR RP SS FD. Analyzed the data: SM RBM NP RP. Contributed reagents/materials/analysis tools: SM AY FC JPD. Wrote the paper: SM JPD VC FC.

                Article
                PONE-D-11-14908
                10.1371/journal.pone.0030989
                3283601
                22363529
                263df21e-71b0-4b1b-bf14-a74ab6ca69a3
                Marcombe et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 2 August 2011
                : 30 December 2011
                Page count
                Pages: 11
                Categories
                Research Article
                Agriculture
                Agrochemicals
                Pest Control
                Biology
                Biochemistry
                Genetics
                Microbiology
                Vector Biology
                Medicine
                Infectious Diseases
                Neglected Tropical Diseases
                Viral Diseases
                Vectors and Hosts

                Uncategorized
                Uncategorized

                Comments

                Comment on this article