70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others) a

      editorial
      1 ,
      Biology Direct
      BioMed Central
      RNA world hypothesis, Proteins first, Acidic pH, tRNA introns, Small ribozymes

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The problems associated with the RNA world hypothesis are well known. In the following I discuss some of these difficulties, some of the alternative hypotheses that have been proposed, and some of the problems with these alternative models. From a biosynthetic – as well as, arguably, evolutionary – perspective, DNA is a modified RNA, and so the chicken-and-egg dilemma of “which came first?” boils down to a choice between RNA and protein. This is not just a question of cause and effect, but also one of statistical likelihood, as the chance of two such different types of macromolecule arising simultaneously would appear unlikely. The RNA world hypothesis is an example of a ‘top down’ (or should it be ‘present back’?) approach to early evolution: how can we simplify modern biological systems to give a plausible evolutionary pathway that preserves continuity of function? The discovery that RNA possesses catalytic ability provides a potential solution: a single macromolecule could have originally carried out both replication and catalysis. RNA – which constitutes the genome of RNA viruses, and catalyzes peptide synthesis on the ribosome – could have been both the chicken and the egg! However, the following objections have been raised to the RNA world hypothesis: (i) RNA is too complex a molecule to have arisen prebiotically; (ii) RNA is inherently unstable; (iii) catalysis is a relatively rare property of long RNA sequences only; and (iv) the catalytic repertoire of RNA is too limited. I will offer some possible responses to these objections in the light of work by our and other labs. Finally, I will critically discuss an alternative theory to the RNA world hypothesis known as ‘proteins first’, which holds that proteins either preceded RNA in evolution, or – at the very least – that proteins and RNA coevolved. I will argue that, while theoretically possible, such a hypothesis is probably unprovable, and that the RNA world hypothesis, although far from perfect or complete, is the best we currently have to help understand the backstory to contemporary biology.

          Reviewers

          This article was reviewed by Eugene Koonin, Anthony Poole and Michael Yarus (nominated by Laura Landweber).

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Hydrothermal vents and the origin of life.

          Submarine hydrothermal vents are geochemically reactive habitats that harbour rich microbial communities. There are striking parallels between the chemistry of the H(2)-CO(2) redox couple that is present in hydrothermal systems and the core energy metabolic reactions of some modern prokaryotic autotrophs. The biochemistry of these autotrophs might, in turn, harbour clues about the kinds of reactions that initiated the chemistry of life. Hydrothermal vents thus unite microbiology and geology to breathe new life into research into one of biology's most important questions - what is the origin of life?
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions.

            At some stage in the origin of life, an informational polymer must have arisen by purely chemical means. According to one version of the 'RNA world' hypothesis this polymer was RNA, but attempts to provide experimental support for this have failed. In particular, although there has been some success demonstrating that 'activated' ribonucleotides can polymerize to form RNA, it is far from obvious how such ribonucleotides could have formed from their constituent parts (ribose and nucleobases). Ribose is difficult to form selectively, and the addition of nucleobases to ribose is inefficient in the case of purines and does not occur at all in the case of the canonical pyrimidines. Here we show that activated pyrimidine ribonucleotides can be formed in a short sequence that bypasses free ribose and the nucleobases, and instead proceeds through arabinose amino-oxazoline and anhydronucleoside intermediates. The starting materials for the synthesis-cyanamide, cyanoacetylene, glycolaldehyde, glyceraldehyde and inorganic phosphate-are plausible prebiotic feedstock molecules, and the conditions of the synthesis are consistent with potential early-Earth geochemical models. Although inorganic phosphate is only incorporated into the nucleotides at a late stage of the sequence, its presence from the start is essential as it controls three reactions in the earlier stages by acting as a general acid/base catalyst, a nucleophilic catalyst, a pH buffer and a chemical buffer. For prebiotic reaction sequences, our results highlight the importance of working with mixed chemical systems in which reactants for a particular reaction step can also control other steps.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front

                Bookmark

                Author and article information

                Journal
                Biol Direct
                Biol. Direct
                Biology Direct
                BioMed Central
                1745-6150
                2012
                13 July 2012
                : 7
                : 23
                Affiliations
                [1 ]Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
                Article
                1745-6150-7-23
                10.1186/1745-6150-7-23
                3495036
                22793875
                26240f50-ad24-402b-afab-817a31a14a13
                Copyright ©2012 Bernhardt; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 May 2012
                : 11 July 2012
                Categories
                Comment

                Life sciences
                rna world hypothesis,trna introns,acidic ph,proteins first,small ribozymes
                Life sciences
                rna world hypothesis, trna introns, acidic ph, proteins first, small ribozymes

                Comments

                Comment on this article