6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Coingestion of protein and carbohydrate in the early recovery phase, compared with carbohydrate only, improves endurance performance despite similar glycogen degradation and AMPK phosphorylation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endurance athletes competing consecutive days need optimal dietary intake during the recovery period. We report that coingestion of protein and carbohydrate soon after exhaustive exercise, compared with carbohydrate only, resulted in better performance the following day. The better performance after coingestion of protein and carbohydrate was not associated with a higher rate of glycogen synthesis or activation of anabolic signaling compared with carbohydrate only. Importantly, nitrogen balance was positive after coingestion of protein and carbohydrate, which was not the case after intake of carbohydrate only, suggesting that protein synthesis contributes to the better performance the following day.

          Abstract

          The present study compared the effects of postexercise carbohydrate plus protein (CHO+PROT) and carbohydrate (CHO)-only supplementation on muscle glycogen metabolism, anabolic cell signaling, and subsequent exercise performance. Nine endurance-trained males cycled twice to exhaustion (muscle glycogen decreased from ~495 to ~125 mmol/kg dry wt) and received either CHO only (1.2 g·kg −1·h −1) or CHO+PROT (0.8/0.4 g·kg −1·h −1) during the first 90 min of recovery. Glycogen content was similar before the performance test after 5 h of recovery. Glycogen synthase (GS) fractional activity increased after exhaustive exercise and remained activated 5 h after, despite substantial glycogen synthesis (176.1 ± 19.1 and 204.6 ± 27.0 mmol/kg dry wt in CHO and CHO+PROT, respectively; P = 0.15). Phosphorylation of GS at site 3 and site 2+2a remained low during recovery. After the 5-h recovery, cycling time to exhaustion was improved by CHO+PROT supplementation compared with CHO supplementation (54.6 ± 11.0 vs. 46.1 ± 9.8 min; P = 0.009). After the performance test, muscle glycogen was equally reduced in CHO+PROT and CHO. Akt Ser 473 and p70s6k Thr 389 phosphorylation was elevated after 5 h of recovery. There were no differences in Akt Ser 473, p70s6k Thr 389, or TSC2 Thr 1462 phosphorylation between treatments. Nitrogen balance was positive in CHO+PROT (19.6 ± 7.6 mg nitrogen/kg; P = 0.04) and higher than CHO (−10.7 ± 6.3 mg nitrogen/kg; P = 0.009). CHO+PROT supplementation during exercise recovery improved subsequent endurance performance relative to consuming CHO only. This improved performance after CHO+PROT supplementation could not be accounted for by differences in glycogen metabolism or anabolic cell signaling, but may have been related to differences in nitrogen balance.

          NEW & NOTEWORTHY Endurance athletes competing consecutive days need optimal dietary intake during the recovery period. We report that coingestion of protein and carbohydrate soon after exhaustive exercise, compared with carbohydrate only, resulted in better performance the following day. The better performance after coingestion of protein and carbohydrate was not associated with a higher rate of glycogen synthesis or activation of anabolic signaling compared with carbohydrate only. Importantly, nitrogen balance was positive after coingestion of protein and carbohydrate, which was not the case after intake of carbohydrate only, suggesting that protein synthesis contributes to the better performance the following day.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: not found
          • Article: not found

          Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle.

            Resistance (RE) and endurance (EE) exercise stimulate mixed skeletal muscle protein synthesis. The phenotypes induced by RE (myofibrillar protein accretion) and EE (mitochondrial expansion) training must result from differential stimulation of myofibrillar and mitochondrial protein synthesis. We measured the synthetic rates of myofibrillar and mitochondrial proteins and the activation of signalling proteins (Akt-mTOR-p70S6K) at rest and after an acute bout of RE or EE in the untrained state and after 10 weeks of RE or EE training in young healthy men. While untrained, RE stimulated both myofibrillar and mitochondrial protein synthesis, 67% and 69% (P < 0.02), respectively. After training, only myofibrillar protein synthesis increased with RE (36%, P = 0.05). EE stimulated mitochondrial protein synthesis in both the untrained, 154%, and trained, 105% (both P < 0.05), but not myofibrillar protein synthesis. Acute RE and EE increased the phosphorylation of proteins in the Akt-mTOR-p70S6K pathway with comparatively minor differences between two exercise stimuli. Phosphorylation of Akt-mTOR-p70S6K proteins was increased after 10 weeks of RE training but not by EE training. Chronic RE or EE training modifies the protein synthetic response of functional protein fractions, with a shift toward exercise phenotype-specific responses, without an obvious explanatory change in the phosphorylation of regulatory signalling pathway proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              AMPK in skeletal muscle function and metabolism

              Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK’s role as an energy sensor is particularly critical in tissues displaying highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives that need to be investigated. Furthermore, we discuss the possible role of AMPK as a therapeutic target as well as different AMPK activators and their potential for future drug development.—Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M.-N., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., Lantier, L. AMPK in skeletal muscle function and metabolism.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Applied Physiology
                Journal of Applied Physiology
                American Physiological Society
                8750-7587
                1522-1601
                August 01 2020
                August 01 2020
                : 129
                : 2
                : 297-310
                Affiliations
                [1 ]Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
                [2 ]Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
                [3 ]Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
                [4 ]Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
                [5 ]Department of Public Health, Aarhus University, Aarhus C, Denmark
                [6 ]Department of Nutrition, Division for Molecular Nutrition, University of Oslo, Oslo, Norway
                [7 ]Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
                Article
                10.1152/japplphysiol.00817.2019
                32584664
                25d35c53-ff69-4813-abcb-0cb48519b610
                © 2020
                History

                Comments

                Comment on this article