10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nitrous oxide (N 2O) synthesis by the freshwater cyanobacterium Microcystis aeruginosa

      , , ,
      Biogeosciences
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. Pure cultures of the freshwater cyanobacterium Microcystis aeruginosa synthesized nitrous oxide (N2O) when supplied with nitrite (NO2-) in darkness (198.9 nmol g-DW−1 h−1 after 24 h) and illumination (163.1 nmol g-DW−1 h−1 after 24 h), whereas N2O production was negligible in abiotic controls supplied with NO2- and in cultures deprived of exogenous nitrogen. N2O production was also positively correlated to the initial NO2- and M. aeruginosa concentrations but was low to negligible when nitrate (NO3-) and ammonium (NH4+) were supplied as the sole exogenous N source instead of NO2-. A protein database search revealed that M. aeruginosa possesses protein homologous to eukaryotic microalgae enzymes known to catalyze the successive reduction of NO2- into nitric oxide (NO) and N2O. Our laboratory study is the first demonstration that M. aeruginosa possesses the ability to synthesize N2O. As M. aeruginosa is a bloom-forming cyanobacterium found globally, further research (including field monitoring) is now needed to establish the significance of N2O synthesis by M. aeruginosa under relevant conditions (especially in terms of N supply). Further work is also needed to confirm the biochemical pathway and potential function of this synthesis.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: not found
          • Article: not found

          A comprehensive quantification of global nitrous oxide sources and sinks

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The original Michaelis constant: translation of the 1913 Michaelis-Menten paper.

            Nearly 100 years ago Michaelis and Menten published their now classic paper [Michaelis, L., and Menten, M. L. (1913) Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333-369] in which they showed that the rate of an enzyme-catalyzed reaction is proportional to the concentration of the enzyme-substrate complex predicted by the Michaelis-Menten equation. Because the original text was written in German yet is often quoted by English-speaking authors, we undertook a complete translation of the 1913 publication, which we provide as Supporting Information . Here we introduce the translation, describe the historical context of the work, and show a new analysis of the original data. In doing so, we uncovered several surprises that reveal an interesting glimpse into the early history of enzymology. In particular, our reanalysis of Michaelis and Menten's data using modern computational methods revealed an unanticipated rigor and precision in the original publication and uncovered a sophisticated, comprehensive analysis that has been overlooked in the century since their work was published. Michaelis and Menten not only analyzed initial velocity measurements but also fit their full time course data to the integrated form of the rate equations, including product inhibition, and derived a single global constant to represent all of their data. That constant was not the Michaelis constant, but rather V(max)/K(m), the specificity constant times the enzyme concentration (k(cat)/K(m) × E(0)).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change

              Lakes and impoundments are important sources of greenhouse gases (GHG: i.e., CO2, CH4, N2O), yet global emission estimates are based on regionally-biased averages and elementary upscaling. We assembled the largest global dataset to date on emission rates of all three GHGs and found they covary with lake size and trophic state. Fitted models were upscaled to estimate global emission using global lake size inventories and a remotely-sensed global lake productivity distribution. Traditional upscaling approaches overestimated CO2 and N2O emission but underestimated CH4 by half. Our upscaled size-productivity weighted estimates (1.25-2.30 Pg of CO2-equivalents annually) are nearly 20% of global CO2 fossil fuel emission with ~75% of the climate impact due to CH4. Moderate global increases in eutrophication could translate to 5-40% increases in the GHG effects in the atmosphere, adding the equivalent effect of another 13% of fossil fuel combustion or an effect equal to GHG emissions from current land use change.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Biogeosciences
                Biogeosciences
                Copernicus GmbH
                1726-4189
                2023
                February 13 2023
                : 20
                : 3
                : 687-693
                Article
                10.5194/bg-20-687-2023
                25c4c0ae-07c0-417e-a0dd-c1ce1ba2f64f
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article