53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cell Cycle Re-Entry and Mitochondrial Defects in Myc-Mediated Hypertrophic Cardiomyopathy and Heart Failure

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          While considerable evidence supports the causal relationship between increases in c-Myc (Myc) and cardiomyopathy as a part of a “fetal re-expression” pattern, the functional role of Myc in mechanisms of cardiomyopathy remains unclear. To address this, we developed a bitransgenic mouse that inducibly expresses Myc under the control of the cardiomyocyte-specific MHC promoter. In adult mice the induction of Myc expression in cardiomyocytes in the heart led to the development of severe hypertrophic cardiomyopathy followed by ventricular dysfunction and ultimately death from congestive heart failure. Mechanistically, following Myc activation, cell cycle markers and other indices of DNA replication were significantly increased suggesting that cell cycle-related events might be a primary mechanism of cardiac dysfunction. Furthermore, pathological alterations at the cellular level included alterations in mitochondrial function with dysregulation of mitochondrial biogenesis and defects in electron transport chain complexes I and III. These data are consistent with the known role of Myc in several different pathways including cell cycle activation, mitochondrial proliferation, and apoptosis, and indicate that Myc activation in cardiomyocytes is an important regulator of downstream pathological sequelae. Moreover, our findings indicate that the induction of Myc in cardiomyocytes is sufficient to cause cardiomyopathy and heart failure, and that sustained induction of Myc, leading to cell cycle re-entry in adult cardiomyocytes, represents a maladaptive response for the mature heart.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis.

          Cardiac mitochondrial function is altered in a variety of inherited and acquired cardiovascular diseases. Recent studies have identified the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) as a regulator of mitochondrial function in tissues specialized for thermogenesis, such as brown adipose. We sought to determine whether PGC-1 controlled mitochondrial biogenesis and energy-producing capacity in the heart, a tissue specialized for high-capacity ATP production. We found that PGC-1 gene expression is induced in the mouse heart after birth and in response to short-term fasting, conditions known to increase cardiac mitochondrial energy production. Forced expression of PGC-1 in cardiac myocytes in culture induced the expression of nuclear and mitochondrial genes involved in multiple mitochondrial energy-transduction/energy-production pathways, increased cellular mitochondrial number, and stimulated coupled respiration. Cardiac-specific overexpression of PGC-1 in transgenic mice resulted in uncontrolled mitochondrial proliferation in cardiac myocytes leading to loss of sarcomeric structure and a dilated cardiomyopathy. These results identify PGC-1 as a critical regulatory molecule in the control of cardiac mitochondrial number and function in response to energy demands.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Myc/Max/Mad network and the transcriptional control of cell behavior.

            The Myc/Max/Mad network comprises a group of transcription factors whose distinct interactions result in gene-specific transcriptional activation or repression. A great deal of research indicates that the functions of the network play roles in cell proliferation, differentiation, and death. In this review we focus on the Myc and Mad protein families and attempt to relate their biological functions to their transcriptional activities and gene targets. Both Myc and Mad, as well as the more recently described Mnt and Mga proteins, form heterodimers with Max, permitting binding to specific DNA sequences. These DNA-bound heterodimers recruit coactivator or corepressor complexes that generate alterations in chromatin structure, which in turn modulate transcription. Initial identification of target genes suggests that the network regulates genes involved in the cell cycle, growth, life span, and morphology. Because Myc and Mad proteins are expressed in response to diverse signaling pathways, the network can be viewed as a functional module which acts to convert environmental signals into specific gene-regulatory programs.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              c-Myc target genes involved in cell growth, apoptosis, and metabolism.

              C. Dang (1999)
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2009
                25 September 2009
                : 4
                : 9
                : e7172
                Affiliations
                [1 ]Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
                [2 ]Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
                [3 ]Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
                [4 ]Louis Stokes Cleveland DVAMC, Cleveland, Ohio, United States of America
                [5 ]University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
                [6 ]Division of Oncology, Department of Medicine and Pathology, Stanford University School of Medicine, Stanford, California, United States of America
                [7 ]Department of Pathology, University of Maryland, Baltimore, Maryland, United States of America
                [8 ]Department of Biochemistry, University of Nevada Reno, Reno, Nevada, United States of America
                Instituto de Química, Universidade de São Paulo, Brazil
                Author notes

                Conceived and designed the experiments: MAS. Performed the experiments: HgL QC SLR AL SLS HF BDH EJL. Analyzed the data: HgL JAW AL SLS XZ NPZ HF DWF RJC MLV JAM BDH EJL MAS. Contributed reagents/materials/analysis tools: DWF. Wrote the paper: HgL SLS BDH EJL MAS.

                [¤]

                Current address: Department of Medicine, Division of Cardiology, Virginia Commonwealth University, and McGuire DVAMC, Richmond, Virginia, United States of America

                Article
                09-PONE-RA-10223R1
                10.1371/journal.pone.0007172
                2747003
                19779629
                25ae16e8-0d55-45e6-a023-88d93a875a29
                Lee et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 7 May 2009
                : 30 August 2009
                Page count
                Pages: 12
                Categories
                Research Article
                Physiology/Muscle and Connective Tissue
                Cardiovascular Disorders/Heart Failure
                Cardiovascular Disorders/Myopathies

                Uncategorized
                Uncategorized

                Comments

                Comment on this article