18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Alternative Strategies for Microbial Remediation of Pollutants via Synthetic Biology

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Continuous contamination of the environment with xenobiotics and related recalcitrant compounds has emerged as a serious pollution threat. Bioremediation is the key to eliminating persistent contaminants from the environment. Traditional bioremediation processes show limitations, therefore it is necessary to discover new bioremediation technologies for better results. In this review we provide an outlook of alternative strategies for bioremediation via synthetic biology, including exploring the prerequisites for analysis of research data for developing synthetic biological models of microbial bioremediation. Moreover, cell coordination in synthetic microbial community, cell signaling, and quorum sensing as engineered for enhanced bioremediation strategies are described, along with promising gene editing tools for obtaining the host with target gene sequences responsible for the degradation of recalcitrant compounds. The synthetic genetic circuit and two-component regulatory system (TCRS)-based microbial biosensors for detection and bioremediation are also briefly explained. These developments are expected to increase the efficiency of bioremediation strategies for best results.

          Related collections

          Most cited references193

          • Record: found
          • Abstract: found
          • Article: not found

          Modeling and simulation of genetic regulatory systems: a literature review.

          In order to understand the functioning of organisms on the molecular level, we need to know which genes are expressed, when and where in the organism, and to which extent. The regulation of gene expression is achieved through genetic regulatory systems structured by networks of interactions between DNA, RNA, proteins, and small molecules. As most genetic regulatory networks of interest involve many components connected through interlocking positive and negative feedback loops, an intuitive understanding of their dynamics is hard to obtain. As a consequence, formal methods and computer tools for the modeling and simulation of genetic regulatory networks will be indispensable. This paper reviews formalisms that have been employed in mathematical biology and bioinformatics to describe genetic regulatory systems, in particular directed graphs, Bayesian networks, Boolean networks and their generalizations, ordinary and partial differential equations, qualitative differential equations, stochastic equations, and rule-based formalisms. In addition, the paper discusses how these formalisms have been used in the simulation of the behavior of actual regulatory systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Competition, not cooperation, dominates interactions among culturable microbial species.

            Microbial cells secrete numerous enzymes, scavenging molecules, and signals that can promote the growth and survival of other cells around them [1-4]. This observation is consistent with the evolution of cooperation within species [5], and there is now an increasing emphasis on the importance of cooperation between different microbial species [4, 6]. We lack, however, a systematic test of the importance of mutually positive interactions between different species, which is vital for assessing the commonness and importance of cooperative evolution in natural communities. Here, we study the extent of mutually positive interaction among bacterial strains isolated from a common aquatic environment. Using data collected from two independent experiments evaluating community productivity across diversity gradients, we show that (1) in pairwise species combinations, the great majority of interactions are net negative and (2) there is no evidence that strong higher-order positive effects arise when more than two species are mixed together. Our data do not exclude the possibility of positive effects in one direction where one species gains at the expense of another, i.e., predator-prey-like interactions. However, these do not constitute cooperation and our analysis suggests that the typical result of adaptation to other microbial species will be competitive, rather than cooperative, phenotypes. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects

              Environmental pollution has been on the rise in the past few decades owing to increased human activities on energy reservoirs, unsafe agricultural practices and rapid industrialization. Amongst the pollutants that are of environmental and public health concerns due to their toxicities are: heavy metals, nuclear wastes, pesticides, green house gases, and hydrocarbons. Remediation of polluted sites using microbial process (bioremediation) has proven effective and reliable due to its eco-friendly features. Bioremediation can either be carried out ex situ or in situ, depending on several factors, which include but not limited to cost, site characteristics, type and concentration of pollutants. Generally, ex situ techniques apparently are more expensive compared to in situ techniques as a result of additional cost attributable to excavation. However, cost of on-site installation of equipment, and inability to effectively visualize and control the subsurface of polluted sites are of major concerns when carrying out in situ bioremediation. Therefore, choosing appropriate bioremediation technique, which will effectively reduce pollutant concentrations to an innocuous state, is crucial for a successful bioremediation project. Furthermore, the two major approaches to enhance bioremediation are biostimulation and bioaugmentation provided that environmental factors, which determine the success of bioremediation, are maintained at optimal range. This review provides more insight into the two major bioremediation techniques, their principles, advantages, limitations and prospects.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                19 May 2020
                2020
                : 11
                : 808
                Affiliations
                Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University , Rohtak, India
                Author notes

                Edited by: Xing Huang, Nanjing Agricultural University, China

                Reviewed by: Bin Liang, Research Center for Eco-Environmental Sciences (CAS), China; Ji-Quan Sun, Inner Mongolia University, China

                *Correspondence: Pratyoosh Shukla, pratyoosh.shukla@ 123456gmail.com

                ORCID: Pratyoosh Shukla, orcid.org/0000-0002-9307-4126

                This article was submitted to Microbiotechnology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2020.00808
                7249858
                32508759
                2550550b-77cf-4ba9-b5f8-2773ce6a0e8c
                Copyright © 2020 Jaiswal and Shukla.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 December 2019
                : 06 April 2020
                Page count
                Figures: 3, Tables: 2, Equations: 0, References: 212, Pages: 14, Words: 0
                Categories
                Microbiology
                Review

                Microbiology & Virology
                synthetic biology,bioremediation,xenobiotics,genetic circuit,biosensor
                Microbiology & Virology
                synthetic biology, bioremediation, xenobiotics, genetic circuit, biosensor

                Comments

                Comment on this article