1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The periodic table of fermented foods: limitations and opportunities

      Applied Microbiology and Biotechnology
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae

          The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and genotypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade-specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus, which includes host-adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacillus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa, Liquorilactobacillus, Ligilactobacillus, Lactiplantibacillus, Furfurilactobacillus, Paucilactobacillus, Limosilactobacillus, Fructilactobacillus, Acetilactobacillus, Apilactobacillus, Levilactobacillus, Secundilactobacillus and Lentilactobacillus are proposed. We also propose to emend the description of the family Lactobacillaceae to include all genera that were previously included in families Lactobacillaceae and Leuconostocaceae. The generic term 'lactobacilli' will remain useful to designate all organisms that were classified as Lactobacillaceae until 2020. This reclassification reflects the phylogenetic position of the micro-organisms, and groups lactobacilli into robust clades with shared ecological and metabolic properties, as exemplified for the emended genus Lactobacillus encompassing species adapted to vertebrates (such as Lactobacillus delbrueckii, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensensii, Lactobacillus johnsonii and Lactobacillus acidophilus) or invertebrates (such as Lactobacillus apis and Lactobacillus bombicola).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conceptual synthesis in community ecology.

            Community ecology is often perceived as a "mess, "given the seemingly vast number of processes that can underlie the many patterns of interest, and the apparent uniqueness of each study system. However, at the most general level, patterns in the composition and diversity of species--the subject matter of community ecology--are influenced by only four classes of process: selection, drift, speciation, and dispersal. Selection represents deterministic fitness differences among species, drift represents stochastic changes in species abundance, speciation creates new species, and dispersal is the movement of organisms across space. All theoretical and conceptual models in community ecology can be understood with respect to their emphasis on these four processes. Empirical evidence exists for all of these processes and many of their interactions, with a predominance of studies on selection. Organizing the material of community ecology according to this framework can clarify the essential similarities and differences among the many conceptual and theoretical approaches to the discipline, and it can also allow for the articulation of a very general theory of community dynamics: species are added to communities via speciation and dispersal, and the relative abundances of these species are then shaped by drift and selection, as well as ongoing dispersal to drive community dynamics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Health benefits of fermented foods: microbiota and beyond.

              Fermented foods and beverages were among the first processed food products consumed by humans. The production of foods such as yogurt and cultured milk, wine and beer, sauerkraut and kimchi, and fermented sausage were initially valued because of their improved shelf life, safety, and organoleptic properties. It is increasingly understood that fermented foods can also have enhanced nutritional and functional properties due to transformation of substrates and formation of bioactive or bioavailable end-products. Many fermented foods also contain living microorganisms of which some are genetically similar to strains used as probiotics. Although only a limited number of clinical studies on fermented foods have been performed, there is evidence that these foods provide health benefits well-beyond the starting food materials.
                Bookmark

                Author and article information

                Journal
                Applied Microbiology and Biotechnology
                Appl Microbiol Biotechnol
                Springer Science and Business Media LLC
                0175-7598
                1432-0614
                April 2022
                April 12 2022
                April 2022
                : 106
                : 8
                : 2815-2826
                Article
                10.1007/s00253-022-11909-y
                35412130
                25271900-3028-4738-906c-0adbc8ffb67f
                © 2022

                https://www.springer.com/tdm

                https://www.springer.com/tdm

                History

                Comments

                Comment on this article