50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fractalkine Is a Novel Human Adipochemokine Associated With Type 2 Diabetes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE

          Leukocyte infiltration of adipose is a critical determinant of obesity-related metabolic diseases. Fractalkine (CX3CL1) and its receptor (CX3CR1) comprise a chemokine system involved in leukocyte recruitment and adhesion in atherosclerosis, but its role in adipose inflammation and type 2 diabetes is unknown.

          RESEARCH DESIGN AND METHODS

          CX3CL1 mRNA and protein were quantified in subcutaneous adipose and blood during experimental human endotoxemia and in lean and obese human adipose. CX3CL1 cellular source was probed in human adipocytes, monocytes, and macrophages, and CX3CL1-blocking antibodies were used to assess its role in monocyte-adipocyte adhesion. The association of genetic variation in CX3CR1 with metabolic traits was determined in a community-based sample. Finally, plasma CX3CL1 levels were measured in a case-control study of type 2 diabetes.

          RESULTS

          Endotoxemia induced adipose CX3CL1 mRNA (32.7-fold, P < 1 × 10 −5) and protein (43-fold, P = 0.006). Obese subjects had higher CX3CL1 levels in subcutaneous adipose compared with lean (0.420 ± 0.387 vs. 0.228 ± 0.187 ng/mL, P = 0.04). CX3CL1 was expressed and secreted by human adipocytes and stromal vascular cells. Inflammatory cytokine induction of CX3CL1 in human adipocytes (27.5-fold mRNA and threefold protein) was completely attenuated by pretreatment with a peroxisome proliferator–activated receptor-γ agonist. A putative functional nonsynonymous single nucleotide polymorphism (rs3732378) in CX3CR1 was associated with adipose and metabolic traits, and plasma CX3CL1 levels were increased in patients with type 2 diabetes vs. nondiabetics (0.506 ± 0.262 vs. 0.422 ± 0.210 ng/mL, P < 0.0001).

          CONCLUSIONS

          CX3CL1-CX3CR1 is a novel inflammatory adipose chemokine system that modulates monocyte adhesion to adipocytes and is associated with obesity, insulin resistance, and type 2 diabetes. These data provide support for CX3CL1 as a diagnostic and therapeutic target in cardiometabolic disease.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Increase in Plasma Endotoxin Concentrations and the Expression of Toll-Like Receptors and Suppressor of Cytokine Signaling-3 in Mononuclear Cells After a High-Fat, High-Carbohydrate Meal

          OBJECTIVE To compare the effect of a high-fat, high-carbohydrate meal (HFHC) with that of a high-fiber and fruit meal on the concentrations of endotoxin (lipopolysaccharide [LPS]), LPS-binding protein (LBP), the expression of toll-like receptors (TLRs), and the suppressor of cytokine signaling-3 (SOCS-3) in mononuclear cells. RESEARCH DESIGN AND METHODS Healthy lean subjects were given 910 calories of either an HFHC meal (n = 10) or an American Heart Association (AHA)-recommended meal rich in fiber and fruit (n = 10) after an overnight fast. Blood was collected before and at 1, 2, and 3 h after the meal. Cellular indexes of oxidative and inflammatory stress; the expression of SOCS-3, TLR2, and TLR4 in mononuclear cells; and plasma concentrations of LPS and LBP were measured. RESULTS HFHC meal intake induced an increase in plasma LPS concentration and the expression of SOCS-3, TLR2, and TLR4 protein, reactive oxygen species generation, and nuclear factor-κB binding activity (P < 0.05 for all). These increases were totally absent after the AHA meal rich in fiber and fruit. CONCLUSIONS The novel changes described after the HFHC meal elucidate further the mechanisms underlying postprandial inflammation and also provide the first evidence explaining the pathogenesis of insulin and leptin resistance mediated by SOCS-3 after such meals. In contrast, an AHA meal does not induce these effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival.

            CX(3)CR1 is a chemokine receptor with a single ligand, the membrane-tethered chemokine CX(3)CL1 (fractalkine). All blood monocytes express CX(3)CR1, but its levels differ between the main 2 subsets, with human CD16(+) and murine Gr1(low) monocytes being CX(3)CR1(hi). Here, we report that absence of either CX(3)CR1 or CX(3)CL1 results in a significant reduction of Gr1(low) blood monocyte levels under both steady-state and inflammatory conditions. Introduction of a Bcl2 transgene restored the wild-type phenotype, suggesting that the CX(3)C axis provides an essential survival signal. Supporting this notion, we show that CX(3)CL1 specifically rescues cultured human monocytes from induced cell death. Human CX(3)CR1 gene polymorphisms are risk factors for atherosclerosis and mice deficient for the CX(3)C receptor or ligand are relatively protected from atherosclerosis development. However, the mechanistic role of CX(3)CR1 in atherogenesis remains unclear. Here, we show that enforced survival of monocytes and plaque-resident phagocytes, including foam cells, restored atherogenesis in CX(3)CR1-deficent mice. The fact that CX(3)CL1-CX(3)CR1 interactions confer an essential survival signal, whose absence leads to increased death of monocytes and/or foam cells, might provide a mechanistic explanation for the role of the CX(3)C chemokine family in atherogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fractalkine and CX3CR1 Mediate a Novel Mechanism of Leukocyte Capture, Firm Adhesion, and Activation under Physiologic Flow

              Leukocyte migration into sites of inflammation involves multiple molecular interactions between leukocytes and vascular endothelial cells, mediating sequential leukocyte capture, rolling, and firm adhesion. In this study, we tested the role of molecular interactions between fractalkine (FKN), a transmembrane mucin-chemokine hybrid molecule expressed on activated endothelium, and its receptor (CX3CR1) in leukocyte capture, firm adhesion, and activation under physiologic flow conditions. Immobilized FKN fusion proteins captured resting peripheral blood mononuclear cells at physiologic wall shear stresses and induced firm adhesion of resting monocytes, resting and interleukin (IL)-2–activated CD8+ T lymphocytes and IL-2–activated NK cells. FKN also induced cell shape change in firmly adherent monocytes and IL-2–activated lymphocytes. CX3CR1-transfected K562 cells, but not control K562 cells, firmly adhered to FKN-expressing ECV-304 cells (ECV-FKN) and tumor necrosis factor α–activated human umbilical vein endothelial cells. This firm adhesion was not inhibited by pertussis toxin, EDTA/EGTA, or antiintegrin antibodies, indicating that the firm adhesion was integrin independent. In summary, FKN mediated the rapid capture, integrin-independent firm adhesion, and activation of circulating leukocytes under flow. Thus, FKN and CX3CR1 mediate a novel pathway for leukocyte trafficking.
                Bookmark

                Author and article information

                Journal
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                May 2011
                23 April 2011
                : 60
                : 5
                : 1512-1518
                Affiliations
                [1] 1Division of Pediatric Endocrinology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
                [2] 2Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania
                [3] 3Department of Medicine, Cardiovascular Institute, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania
                [4] 4Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
                [5] 5Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania
                [6] 6Division of Endocrinology, Diabetes, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
                Author notes
                Corresponding author: Muredach P. Reilly, muredach@ 123456mail.med.upenn.edu .
                Article
                0956
                10.2337/db10-0956
                3292325
                21525510
                2513ab3e-ad9e-4b8a-b2ee-74608812784d
                © 2011 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 08 July 2010
                : 26 January 2011
                Categories
                Obesity Studies

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article