2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beneficial bile acid metabolism from Lactobacillus plantarum of food origin

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bile acid (BA) signatures are altered in many disease states. BA metabolism is an important microbial function to assist gut colonization and persistence, as well as microbial survival during gastro intestinal (GI) transit and it is an important criteria for potential probiotic bacteria. Microbes that express bile salt hydrolase (BSH), gateway BA modifying enzymes, are considered to have an advantage in the gut. This property is reported as selectively limited to gut-associated microbes. Food-associated microbes have the potential to confer health benefits to the human consumer. Here, we report that food associated Lactobacillus plantarum strains are capable of BA metabolism, they can withstand BA associated stress and propagate, a recognised important characteristic for GIT survival. Furthermore, we report that these food associated Lactobacillus plantarum strains have the selective ability to alter BA signatures in favour of receptor activation that would be beneficial to humans. Indeed, all of the strains examined showed a clear preference to alter human glycol-conjugated BAs, although clear strain-dependent modifications were also evident. This study demonstrates that BA metabolism by food-borne non-pathogenic bacteria is beneficial to both microbe and man and it identifies an evolutionary-conserved characteristic, previously considered unique to gut residents, among food-associated non-pathogenic isolates.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Health benefits of fermented foods: microbiota and beyond.

          Fermented foods and beverages were among the first processed food products consumed by humans. The production of foods such as yogurt and cultured milk, wine and beer, sauerkraut and kimchi, and fermented sausage were initially valued because of their improved shelf life, safety, and organoleptic properties. It is increasingly understood that fermented foods can also have enhanced nutritional and functional properties due to transformation of substrates and formation of bioactive or bioavailable end-products. Many fermented foods also contain living microorganisms of which some are genetically similar to strains used as probiotics. Although only a limited number of clinical studies on fermented foods have been performed, there is evidence that these foods provide health benefits well-beyond the starting food materials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Complete genome sequence of Lactobacillus plantarum WCFS1.

            The 3,308,274-bp sequence of the chromosome of Lactobacillus plantarum strain WCFS1, a single colony isolate of strain NCIMB8826 that was originally isolated from human saliva, has been determined, and contains 3,052 predicted protein-encoding genes. Putative biological functions could be assigned to 2,120 (70%) of the predicted proteins. Consistent with the classification of L. plantarum as a facultative heterofermentative lactic acid bacterium, the genome encodes all enzymes required for the glycolysis and phosphoketolase pathways, all of which appear to belong to the class of potentially highly expressed genes in this organism, as was evident from the codon-adaptation index of individual genes. Moreover, L. plantarum encodes a large pyruvate-dissipating potential, leading to various end-products of fermentation. L. plantarum is a species that is encountered in many different environmental niches, and this flexible and adaptive behavior is reflected by the relatively large number of regulatory and transport functions, including 25 complete PTS sugar transport systems. Moreover, the chromosome encodes >200 extracellular proteins, many of which are predicted to be bound to the cell envelope. A large proportion of the genes encoding sugar transport and utilization, as well as genes encoding extracellular functions, appear to be clustered in a 600-kb region near the origin of replication. Many of these genes display deviation of nucleotide composition, consistent with a foreign origin. These findings suggest that these genes, which provide an important part of the interaction of L. plantarum with its environment, form a lifestyle adaptation region in the chromosome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut.

              Alterations in the gastrointestinal microbiota have been implicated in obesity in mice and humans, but the key microbial functions influencing host energy metabolism and adiposity remain to be determined. Despite an increased understanding of the genetic content of the gastrointestinal microbiome, functional analyses of common microbial gene sets are required. We established a controlled expression system for the parallel functional analysis of microbial alleles in the murine gut. Using this approach we show that bacterial bile salt hydrolase (BSH) mediates a microbe-host dialogue that functionally regulates host lipid metabolism and plays a profound role in cholesterol metabolism and weight gain in the host. Expression of cloned BSH enzymes in the gastrointestinal tract of gnotobiotic or conventionally raised mice significantly altered plasma bile acid signatures and regulated transcription of key genes involved in lipid metabolism (Pparγ, Angptl4), cholesterol metabolism (Abcg5/8), gastrointestinal homeostasis (RegIIIγ), and circadian rhythm (Dbp, Per1/2) in the liver or small intestine. High-level expression of BSH in conventionally raised mice resulted in a significant reduction in host weight gain, plasma cholesterol, and liver triglycerides, demonstrating the overall impact of elevated BSH activity on host physiology. In addition, BSH activity in vivo varied according to BSH allele group, indicating that subtle differences in activity can have significant effects on the host. In summary, we demonstrate that bacterial BSH activity significantly impacts the systemic metabolic processes and adiposity in the host and represents a key mechanistic target for the control of obesity and hypercholesterolemia.
                Bookmark

                Author and article information

                Contributors
                s.joyce@ucc.ie
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                24 January 2020
                24 January 2020
                2020
                : 10
                : 1165
                Affiliations
                [1 ]ISNI 0000 0001 2202 794X, GRID grid.17083.3d, University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, 64100, Via Balzarini 1, ; Teramo, Italy
                [2 ]ISNI 0000000123318773, GRID grid.7872.a, APC Microbiome Ireland, University College Cork, ; Cork, Ireland
                [3 ]ISNI 0000000123318773, GRID grid.7872.a, School of Biochemistry and Cell Biology, University College Cork, ; Cork, Ireland
                [4 ]ISNI 0000000123318773, GRID grid.7872.a, School of Pharmacy, University College Cork, ; Cork, Ireland
                [5 ]ISNI 0000000123318773, GRID grid.7872.a, School of Microbiology, University College Cork, ; Cork, Ireland
                Article
                58069
                10.1038/s41598-020-58069-5
                6981223
                31980710
                2502d18d-5db3-49f1-924a-1068b1c15805
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 7 October 2019
                : 10 January 2020
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                biological techniques,microbiology,environmental sciences,biomarkers
                Uncategorized
                biological techniques, microbiology, environmental sciences, biomarkers

                Comments

                Comment on this article