0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nitrogen doping for facile and effective modification of graphene surfaces

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nitrogen-doped graphene (N-graphene) was prepared by exposing the graphene transferred to different substrates to atomic nitrogen plasma.

          Abstract

          We report experimental and theoretical investigations of nitrogen doped graphene. A low-pressure Chemical Vapor Deposition (CVD) system was used to grow large-area graphene on copper foil, using ethylene as the carbon source. Nitrogen-doped graphene (N-graphene) was prepared by exposing the graphene transferred to different substrates to atomic nitrogen plasma. The effect of varying nitrogen flow rates on doping of graphene was investigated while keeping the power and time constant during the process. The N-graphene was characterized via Raman Spectroscopy, X-ray Photoelectron Spectroscopy (XPS), Scanning Tunneling Microscopy and Spectroscopy (STM and STS), and Fourier Transform Infrared spectroscopy (FTIR). Raman mapping of N-graphene was also performed to show homogeneity of nitrogen on the graphitic lattice. XPS results have revealed the presence of different nitrogen configurations in the graphitic lattice with similar doping concentrations. Density functional theory (DFT) based calculations showed that the periodic adsorption of N atoms predominantly occurs on top of the C atoms rather than through substitution of C in our N-graphene samples. Our results indicate a feasible procedure for producing N-graphene with homogenous and effective doping which would be valuable in electronic and optical applications.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: not found
          • Article: not found

          Generalized Gradient Approximation Made Simple

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Semiempirical GGA-type density functional constructed with a long-range dispersion correction.

            A new density functional (DF) of the generalized gradient approximation (GGA) type for general chemistry applications termed B97-D is proposed. It is based on Becke's power-series ansatz from 1997 and is explicitly parameterized by including damped atom-pairwise dispersion corrections of the form C(6) x R(-6). A general computational scheme for the parameters used in this correction has been established and parameters for elements up to xenon and a scaling factor for the dispersion part for several common density functionals (BLYP, PBE, TPSS, B3LYP) are reported. The new functional is tested in comparison with other GGAs and the B3LYP hybrid functional on standard thermochemical benchmark sets, for 40 noncovalently bound complexes, including large stacked aromatic molecules and group II element clusters, and for the computation of molecular geometries. Further cross-validation tests were performed for organometallic reactions and other difficult problems for standard functionals. In summary, it is found that B97-D belongs to one of the most accurate general purpose GGAs, reaching, for example for the G97/2 set of heat of formations, a mean absolute deviation of only 3.8 kcal mol(-1). The performance for noncovalently bound systems including many pure van der Waals complexes is exceptionally good, reaching on the average CCSD(T) accuracy. The basic strategy in the development to restrict the density functional description to shorter electron correlation lengths scales and to describe situations with medium to large interatomic distances by damped C(6) x R(-6) terms seems to be very successful, as demonstrated for some notoriously difficult reactions. As an example, for the isomerization of larger branched to linear alkanes, B97-D is the only DF available that yields the right sign for the energy difference. From a practical point of view, the new functional seems to be quite robust and it is thus suggested as an efficient and accurate quantum chemical method for large systems where dispersion forces are of general importance. Copyright 2006 Wiley Periodicals, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The rise of graphene.

              Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                RSCACL
                RSC Advances
                RSC Adv.
                Royal Society of Chemistry (RSC)
                2046-2069
                2017
                2017
                : 7
                : 45
                : 28383-28392
                Affiliations
                [1 ]Department of Materials Science and Engineering
                [2 ]Izmir Institute of Technology
                [3 ]Turkey
                [4 ]Department of Physics
                [5 ]Microstructural Analysis Unit
                [6 ]School of Physics and Advanced Materials
                [7 ]University of Technology
                [8 ]Sydney
                [9 ]Australia
                Article
                10.1039/C7RA03046K
                24faba05-2565-4a69-b114-2a5fb27be1aa
                © 2017
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content222

                Cited by13

                Most referenced authors3,427