11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Accuracy of intraocular lens formulas using total keratometry in eyes with previous myopic laser refractive surgery

      research-article
      , , , ,
      Eye
      Nature Publishing Group UK
      Outcomes research, Prognosis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives

          This comparative study aimed to determine if total keratometry (TK) from IOLMaster 700 could be applied to conventional formulas to perform IOL power calculation in eyes with previous myopic laser refractive surgery, and to evaluate their accuracy with known post-laser refractive surgery formulas.

          Methods

          Sixty-four eyes of 49 patients with previous myopic laser refractive surgery were evaluated 1 month after cataract surgery. A comparison of the prediction error was made between no clinical history post-laser refractive surgery formulas (Barrett True-K, Haigis-L, Shammas-PL) and conventional formulas (EVO, Haigis, Hoffer Q, Holladay I, and SRK/T) using TK values obtained with the optical biometer IOLMaster 700 (Carl Zeiss Meditec), as well as Barrett True-K with TK.

          Results

          The mean prediction error was statistically different from zero for Barrett True-K, Barrett True-K with TK, Haigis-L, Shammas-PL, and Holladay I with TK. The mean absolute error (MAE) was 0.424, 0.671, 0.638, 0.439, 0.408, 0.424, 0.479, 0.647, and 0.524, and median absolute error (MedAE) was 0.388, 0.586, 0.605, 0.298, 0.294, 0.324, 0.333, 0.438, and 0.377 for Barrett True-K, Haigis-L, Shammas-PL, Barrett True-K TK, EVO with TK, Haigis with TK, Hoffer Q with TK, Holladay I with TK, and SRK/T with TK, respectively. EVO TK followed by Barrett True-K TK and Haigis TK achieved the highest percentages of patients with absolute prediction error within 0.50 and 1.00 D (68.75%, 92.19%, and 64.06%, 92.19%, respectively)

          Conclusions

          Formulas combined with TK achieve similar or better results compared to existing no-history post-myopic laser refractive surgery formulas.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis.

          The precision of intraocular lens (IOL) calculation is essentially determined by the accuracy of the measurement of axial length. In addition to classical ultrasound biometry, partial coherence interferometry serves as a new optical method for axial length determination. A functional prototype from Carl Zeiss Jena implementing this principle was compared with immersion ultrasound biometry in our laboratory. In 108 patients attending the biometry laboratory for planning of cataract surgery, axial lengths were additionally measured optically. Whereas surgical decisions were based on ultrasound data, we used postoperative refraction measurements to calculate retrospectively what results would have been obtained if optical axial length data had been used for IOL calculation. For the translation of optical to geometrical lengths, five different conversion formulas were used, among them the relation which is built into the Zeiss IOL-Master. IOL calculation was carried out according to Haigis with and without optimization of constants. On the basis of ultrasound immersion data from our Grieshaber Biometric System (GBS), postoperative refraction after implantation of a Rayner IOL type 755 U was predicted correctly within +/- 1 D in 85.7% and within +/- 2 D in 99% of all cases. An analogous result was achieved with optical axial length data after suitable transformation of optical path lengths into geometrical distances. Partial coherence interferometry is a noncontact, user- and patient-friendly method for axial length determination and IOL planning with an accuracy comparable to that of high-precision immersion ultrasound.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Contribution of posterior corneal astigmatism to total corneal astigmatism.

            To determine the contribution of posterior corneal astigmatism to total corneal astigmatism and the error in estimating total corneal astigmatism from anterior corneal measurements only using a dual-Scheimpflug analyzer. Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA. Case series. Total corneal astigmatism was calculated using ray tracing, corneal astigmatism from simulated keratometry, anterior corneal astigmatism, and posterior corneal astigmatism, and the changes with age were analyzed. Vector analysis was used to assess the error produced by estimating total corneal astigmatism from anterior corneal measurements only. The study analyzed 715 corneas of 435 consecutive patients. The mean magnitude of posterior corneal astigmatism was -0.30 diopter (D). The steep corneal meridian was aligned vertically (60 to 120 degrees) in 51.9% of eyes for the anterior surface and in 86.6% for the posterior surface. With increasing age, the steep anterior corneal meridian tended to change from vertical to horizontal, while the steep posterior corneal meridian did not change. The magnitudes of anterior and posterior corneal astigmatism were correlated when the steeper anterior meridian was aligned vertically but not when it was aligned horizontally. Anterior corneal measurements underestimated total corneal astigmatism by 0.22 @ 180 and exceeded 0.50 D in 5% of eyes. Ignoring posterior corneal astigmatism may yield incorrect estimation of total corneal astigmatism. Selecting toric intraocular lenses based on anterior corneal measurements could lead to overcorrection in eyes that have with-the-rule astigmatism and undercorrection in eyes that have against-the-rule astigmatism. The authors received research support from Ziemer Group. In addition, Dr. Koch has a financial interest with Alcon Laboratories, Inc., Abbott Medical Optics, Inc., Calhoun Vision, Inc., NuLens, and Optimedica Corp. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Hoffer Q formula: a comparison of theoretic and regression formulas.

              A new formula, the Hoffer Q, was developed to predict the pseudophakic anterior chamber depth (ACD) for theoretic intraocular lens (IOL) power formulas. It relies on a personalized ACD, axial length, and corneal curvature. In 180 eyes, the Q formula proved more accurate than those using a constant ACD (P < .0001) and equal (P = .63) to those using the actual postoperative measured ACD (which is not possible clinically). In 450 eyes of one style IOL implanted by one surgeon, the Hoffer Q formula was equal to the Holladay (P = .65) and SRK/T (P = .63) and more accurate than the SRK (P < .0001) and SRK II (P = .004) regression formulas using optimized personalization constants. The Hoffer Q formula may be clinically more accurate than the Holladay and SRK/T formulas in eyes shorter than 22.0 mm. Even the original nonpersonalized constant ACD Hoffer formula compared with SRK I (using the most valid possible optimized personal A-constant) has a better mean absolute error (0.56 versus 0.59) and a significantly better range of IOL prediction error (3.44 diopters [D] versus 7.31 D). The range of error of the Hoffer Q formula (3.59 D) was half that of SRK I (7.31 D). The highest IOL power errors in the 450 eyes were in the SRK II (3.14 D) and SRK I (6.14 D); the power error was 2.08 D using the Hoffer Q formula. The series using overall personalized ACD was more accurate than using an axial length subgroup personalized ACD in each axial length subgroup. The results strongly support replacing regression formulas with third-generation personalized theoretic formulas and carefully evaluating the Holladay, SRK/T, and Hoffer Q formulas.
                Bookmark

                Author and article information

                Contributors
                tun_kuan_yeo@ttsh.com.sg
                Journal
                Eye (Lond)
                Eye (Lond)
                Eye
                Nature Publishing Group UK (London )
                0950-222X
                1476-5454
                31 August 2020
                31 August 2020
                June 2021
                : 35
                : 6
                : 1705-1711
                Affiliations
                GRID grid.240988.f, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, ; Singapore, Singapore
                Author information
                http://orcid.org/0000-0002-0589-4555
                Article
                1159
                10.1038/s41433-020-01159-5
                8169843
                32868880
                248f7a40-2e71-41c7-bec8-3179ec532e5d
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 9 May 2020
                : 13 August 2020
                : 19 August 2020
                Categories
                Article
                Custom metadata
                © The Royal College of Ophthalmologists 2021

                Vision sciences
                outcomes research,prognosis
                Vision sciences
                outcomes research, prognosis

                Comments

                Comment on this article