10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Staphylococcus aureus Extracellular Vesicles: A Story of Toxicity and the Stress of 2020

      research-article
      , , , *
      Toxins
      MDPI
      Staphylococcus aureus, extracellular vesicles, toxins, stress

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Staphylococcus aureus generates and releases extracellular vesicles (EVs) that package cytosolic, cell-wall associated, and membrane proteins, as well as glycopolymers and exoproteins, including alpha hemolysin, leukocidins, phenol-soluble modulins, superantigens, and enzymes. S. aureus EVs, but not EVs from pore-forming toxin-deficient strains, were cytolytic for a variety of mammalian cell types, but EV internalization was not essential for cytotoxicity. Because S. aureus is subject to various environmental stresses during its encounters with the host during infection, we assessed how these exposures affected EV production in vitro. Staphylococci grown at 37 °C or 40 °C did not differ in EV production, but cultures incubated at 30 °C yielded more EVs when grown to the same optical density. S. aureus cultivated in the presence of oxidative stress, in iron-limited media, or with subinhibitory concentrations of ethanol, showed greater EV production as determined by protein yield and quantitative immunoblots. In contrast, hyperosmotic stress or subinhibitory concentrations of erythromycin reduced S. aureus EV yield. EVs represent a novel S. aureus secretory system that is affected by a variety of stress responses and allows the delivery of biologically active pore-forming toxins and other virulence determinants to host cells.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management.

          Staphylococcus aureus is a major human pathogen that causes a wide range of clinical infections. It is a leading cause of bacteremia and infective endocarditis as well as osteoarticular, skin and soft tissue, pleuropulmonary, and device-related infections. This review comprehensively covers the epidemiology, pathophysiology, clinical manifestations, and management of each of these clinical entities. The past 2 decades have witnessed two clear shifts in the epidemiology of S. aureus infections: first, a growing number of health care-associated infections, particularly seen in infective endocarditis and prosthetic device infections, and second, an epidemic of community-associated skin and soft tissue infections driven by strains with certain virulence factors and resistance to β-lactam antibiotics. In reviewing the literature to support management strategies for these clinical manifestations, we also highlight the paucity of high-quality evidence for many key clinical questions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A common mechanism of cellular death induced by bactericidal antibiotics.

            Antibiotic mode-of-action classification is based upon drug-target interaction and whether the resultant inhibition of cellular function is lethal to bacteria. Here we show that the three major classes of bactericidal antibiotics, regardless of drug-target interaction, stimulate the production of highly deleterious hydroxyl radicals in Gram-negative and Gram-positive bacteria, which ultimately contribute to cell death. We also show, in contrast, that bacteriostatic drugs do not produce hydroxyl radicals. We demonstrate that the mechanism of hydroxyl radical formation induced by bactericidal antibiotics is the end product of an oxidative damage cellular death pathway involving the tricarboxylic acid cycle, a transient depletion of NADH, destabilization of iron-sulfur clusters, and stimulation of the Fenton reaction. Our results suggest that all three major classes of bactericidal drugs can be potentiated by targeting bacterial systems that remediate hydroxyl radical damage, including proteins involved in triggering the DNA damage response, e.g., RecA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The inflammasomes: guardians of the body.

              The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1beta and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.
                Bookmark

                Author and article information

                Journal
                Toxins (Basel)
                Toxins (Basel)
                toxins
                Toxins
                MDPI
                2072-6651
                20 January 2021
                February 2021
                : 13
                : 2
                : 75
                Affiliations
                Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; xwang39@ 123456bwh.harvard.edu (X.W.); pkoffi@ 123456bwh.harvard.edu (P.F.K.); oenglish@ 123456bwh.harvard.edu (O.F.E.)
                Author notes
                [* ]Correspondence: jclee@ 123456bwh.harvard.edu
                Article
                toxins-13-00075
                10.3390/toxins13020075
                7909408
                33498438
                2471ff0c-370b-4e3c-9fb0-923aa55f611f
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 December 2020
                : 15 January 2021
                Categories
                Article

                Molecular medicine
                staphylococcus aureus,extracellular vesicles,toxins,stress
                Molecular medicine
                staphylococcus aureus, extracellular vesicles, toxins, stress

                Comments

                Comment on this article