139
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Widespread JNK-dependent alternative splicing induces a positive feedback loop through CELF2-mediated regulation of MKK7 during T-cell activation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, Martinez et al. find a positive feedback loop in the JNK signaling pathway through the alternative splicing of MKK7, identify the RNA-binding protein CELF2 as a major regulator of MKK7 splicing, and show that ∼25% of T-cell receptor-mediated alternative splicing events are dependent on JNK signaling. This study provides insight into a novel paradigm for the reciprocal interplay of signaling and splicing.

          Abstract

          Alternative splicing is prevalent among genes encoding signaling molecules; however, the functional consequence of differential isoform expression remains largely unknown. Here we demonstrate that, in response to T-cell activation, the Jun kinase (JNK) kinase MAP kinase kinase 7 (MKK7) is alternatively spliced to favor an isoform that lacks exon 2. This isoform restores a JNK-docking site within MKK7 that is disrupted in the larger isoform. Consistently, we show that skipping of MKK7 exon 2 enhances JNK pathway activity, as indicated by c-Jun phosphorylation and up-regulation of TNF-α. Moreover, this splicing event is itself dependent on JNK signaling. Thus, MKK7 alternative splicing represents a positive feedback loop through which JNK promotes its own signaling. We further show that repression of MKK7 exon 2 is dependent on the presence of flanking sequences and the JNK-induced expression of the RNA-binding protein CELF2, which binds to these regulatory elements. Finally, we found that ∼25% of T-cell receptor-mediated alternative splicing events are dependent on JNK signaling. Strikingly, these JNK-dependent events are also significantly enriched for responsiveness to CELF2. Together, our data demonstrate a widespread role for the JNK–CELF2 axis in controlling splicing during T-cell activation, including a specific role in propagating JNK signaling.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          JNK signaling in apoptosis.

          Jun N-terminal kinases or JNKs play a critical role in death receptor-initiated extrinsic as well as mitochondrial intrinsic apoptotic pathways. JNKs activate apoptotic signaling by the upregulation of pro-apoptotic genes through the transactivation of specific transcription factors or by directly modulating the activities of mitochondrial pro- and antiapoptotic proteins through distinct phosphorylation events. This review analyses our present understanding of the role of JNK in apoptotic signaling and the various mechanisms by which JNK promotes apoptosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A mammalian protein targeted by G1-arresting rapamycin-receptor complex.

            The structurally related natural products rapamycin and FK506 bind to the same intracellular receptor, FKBP12, yet the resulting complexes interfere with distinct signalling pathways. FKBP12-rapamycin inhibits progression through the G1 phase of the cell cycle in osteosarcoma, liver and T cells as well as in yeast, and interferes with mitogenic signalling pathways that are involved in G1 progression, namely with activation of the protein p70S6k (refs 5, 11-13) and cyclin-dependent kinases. Here we isolate a mammalian FKBP-rapamycin-associated protein (FRAP) whose binding to structural variants of rapamycin complexed to FKBP12 correlates with the ability of these ligands to inhibit cell-cycle progression. Peptide sequences from purified bovine FRAP were used to isolate a human cDNA clone that is highly related to the DRR1/TOR1 and DRR2/TOR2 gene products from Saccharomyces cerevisiae. Although it has not been previously demonstrated that either of the DRR/TOR gene products can bind the FKBP-rapamycin complex directly, these yeast genes have been genetically linked to a rapamycin-sensitive pathway and are thought to encode lipid kinases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expansion of the eukaryotic proteome by alternative splicing.

              The collection of components required to carry out the intricate processes involved in generating and maintaining a living, breathing and, sometimes, thinking organism is staggeringly complex. Where do all of the parts come from? Early estimates stated that about 100,000 genes would be required to make up a mammal; however, the actual number is less than one-quarter of that, barely four times the number of genes in budding yeast. It is now clear that the 'missing' information is in large part provided by alternative splicing, the process by which multiple different functional messenger RNAs, and therefore proteins, can be synthesized from a single gene.
                Bookmark

                Author and article information

                Journal
                Genes Dev
                Genes Dev
                genesdev
                genesdev
                GAD
                Genes & Development
                Cold Spring Harbor Laboratory Press
                0890-9369
                1549-5477
                1 October 2015
                : 29
                : 19
                : 2054-2066
                Affiliations
                [1 ]Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
                [2 ]Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
                [3 ]Department of Cell and Molecular Medicine, University of California at San Diego, San Diego, California 92093, USA;
                [4 ]Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennysylvania 19104, USA
                Author notes
                Corresponding author: klync@ 123456mail.med.upenn.edu
                Article
                8711660
                10.1101/gad.267245.115
                4604346
                26443849
                246ef545-0bd3-4243-a803-19665561ff64
                © 2015 Martinez et al.; Published by Cold Spring Harbor Laboratory Press

                This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 10 June 2015
                : 4 September 2015
                Page count
                Pages: 13
                Funding
                Funded by: National Institutes of Health http://dx.doi.org/10.13039/100000002
                Award ID: F31GM103255
                Award ID: R01GM084034
                Award ID: R01GM103383
                Award ID: R01GM052872
                Award ID: R01HG004659
                Categories
                Research Paper

                alternative splicing,jnk,mkk7,positive feedback,celf2
                alternative splicing, jnk, mkk7, positive feedback, celf2

                Comments

                Comment on this article