0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Physicochemical properties and aroma release of gelatin-stabilized rapeseed oil-in-water emulsions as affected by pH

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of ultrasound pretreatment on the enzymatic hydrolysis of soy protein isolates and on the emulsifying properties of hydrolysates.

          Soy protein isolate (SPI) was modified by ultrasound pretreatment (200 W, 400 W, 600 W) and controlled papain hydrolysis, and the emulsifying properties of SPIH (SPI hydrolysates) and USPIH (ultrasound pretreated SPIH) were investigated. Analysis of mean droplet sizes and creaming indices of emulsions formed by SPIH and USPIH showed that some USPIH had markedly improved emulsifying capability and emulsion stabilization against creaming during quiescent storage. Compared with control SPI and SPIH-0.58% degree of hydrolysis (DH), USPIH-400W-1.25% (USPIH pretreated under 400W sonication and hydrolyzed to 1.25% DH) was capable of forming a stable fine emulsion (d43=1.79 μm) at a lower concentration (3.0% w/v). A variety of physicochemical and interfacial properties of USPIH-400W products have been investigated in relation to DH and emulsifying properties. SDS-PAGE showed that ultrasound pretreatment could significantly improve the accessibility of some subunits (α-7S and A-11S) in soy proteins to papain hydrolysis, resulting in changes in DH, protein solubility (PS), surface hydrophobicity (H0), and secondary structure for USPIH-400W. Compared with control SPI and SPIH-0.58%, USPIH-400W-1.25% had a higher protein adsorption fraction (Fads) and a lower saturation surface load (Γsat), which is mainly due to its higher PS and random coil content, and may explain its markedly improved emulsifying capability. This study demonstrated that combined ultrasound pretreatment and controlled enzymatic hydrolysis could be an effective method for the functionality modification of globular proteins.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found
            Is Open Access

            Oil-in-water pickering emulsions via microfluidization with cellulose nanocrystals: 1. Formation and stability

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gelatin particle-stabilized high internal phase emulsions as nutraceutical containers.

              In this paper, we report for the first time the use of a well-dispersed gelatin particle as a representative of natural and biocompatible materials to be an effective particle stabilizer for high internal phase emulsion (HIPE) formulation. Fairly monodispersed gelatin particles (∼200 nm) were synthesized through a two-step desolvation method and characterized by dynamic light scattering, ζ-potential measurements, scanning electron microscopy, and atomic force microscopy. Those protein latexes were then used as sole emulsifiers to fabricate stable oil-in-water Pickering HIPEs at different concentrations, pH conditions, and homogenization times. Most of the gelatin particles were irreversibly adsorbed at the oil-water interface to hinder droplet coalescence, such that Pickering HIPEs can be formed by a small amount of gelatin particles (as low as 0.5 wt % in the water phase) at pH far away from the isoelectric point of the gelatin particles. In addition, increasing homogenization time led to narrow size distribution of droplets, and high particle concentration resulted in more solidlike Pickering HIPEs. In vitro controlled-release experiments revealed that the release of the encapsulated β-carotene can be tuned by manipulating the concentration of gelatin particles in the formulation, suggesting that the stable and narrow-size-distributed gelatin-stabilized HIPEs had potential in functional food and pharmaceutical applications.
                Bookmark

                Author and article information

                Journal
                Colloids and Surfaces A: Physicochemical and Engineering Aspects
                Colloids and Surfaces A: Physicochemical and Engineering Aspects
                Elsevier BV
                09277757
                June 2022
                June 2022
                : 642
                : 128706
                Article
                10.1016/j.colsurfa.2022.128706
                2434ab05-77c8-4864-bb98-16f01ce83b30
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article