7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exploring the socio-economic and environmental components of infectious diseases using multivariate geovisualization: West Nile Virus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          This study postulates that underlying environmental conditions and a susceptible population’s socio-economic status should be explored simultaneously to adequately understand a vector borne disease infection risk. Here we focus on West Nile Virus (WNV), a mosquito borne pathogen, as a case study for spatial data visualization of environmental characteristics of a vector’s habitat alongside human demographic composition for understanding potential public health risks of infectious disease. Multiple efforts have attempted to predict WNV environmental risk, while others have documented factors related to human vulnerability to the disease. However, analytical modeling that combines the two is difficult due to the number of potential explanatory variables, varying spatial resolutions of available data, and differing research questions that drove the initial data collection. We propose that the use of geovisualization may provide a glimpse into the large number of potential variables influencing the disease and help distill them into a smaller number that might reveal hidden and unknown patterns. This geovisual look at the data might then guide development of analytical models that can combine environmental and socio-economic data.

          Methods

          Geovisualization was used to integrate an environmental model of the disease vector’s habitat alongside human risk factors derived from socio-economic variables. County level WNV incidence rates from California, USA, were used to define a geographically constrained study area where environmental and socio-economic data were extracted from 1,133 census tracts. A previously developed mosquito habitat model that was significantly related to WNV infected dead birds was used to describe the environmental components of the study area. Self-organizing maps found 49 clusters, each of which contained census tracts that were more similar to each other in terms of WNV environmental and socio-economic data. Parallel coordinate plots permitted visualization of each cluster’s data, uncovering patterns that allowed final census tract mapping exposing complex spatial patterns contained within the clusters.

          Results

          Our results suggest that simultaneously visualizing environmental and socio-economic data supports a fuller understanding of the underlying spatial processes for risks to vector-borne disease. Unexpected patterns were revealed in our study that would be useful for developing future multilevel analytical models. For example, when the cluster that contained census tracts with the highest median age was examined, it was determined that those census tracts only contained moderate mosquito habitat risk. Likewise, the cluster that contained census tracts with the highest mosquito habitat risk had populations with moderate median age. Finally, the cluster that contained census tracts with the highest WNV human incidence rates had unexpectedly low mosquito habitat risk.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Neighborhoods and health.

          Features of neighborhoods or residential environments may affect health and contribute to social and race/ethnic inequalities in health. The study of neighborhood health effects has grown exponentially over the past 15 years. This chapter summarizes key work in this area with a particular focus on chronic disease outcomes (specifically obesity and related risk factors) and mental health (specifically depression and depressive symptoms). Empirical work is classified into two main eras: studies that use census proxies and studies that directly measure neighborhood attributes using a variety of approaches. Key conceptual and methodological challenges in studying neighborhood health effects are reviewed. Existing gaps in knowledge and promising new directions in the field are highlighted.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Uncertain Geographic Context Problem

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The outbreak of West Nile virus infection in the New York City area in 1999.

              In late August 1999, an unusual cluster of cases of meningoencephalitis associated with muscle weakness was reported to the New York City Department of Health. The initial epidemiologic and environmental investigations suggested an arboviral cause. Active surveillance was implemented to identify patients hospitalized with viral encephalitis and meningitis. Cerebrospinal fluid, serum, and tissue specimens from patients with suspected cases underwent serologic and viral testing for evidence of arboviral infection. Outbreak surveillance identified 59 patients who were hospitalized with West Nile virus infection in the New York City area during August and September of 1999. The median age of these patients was 71 years (range, 5 to 95). The overall attack rate of clinical West Nile virus infection was at least 6.5 cases per million population, and it increased sharply with age. Most of the patients (63 percent) had clinical signs of encephalitis; seven patients died (12 percent). Muscle weakness was documented in 27 percent of the patients and flaccid paralysis in 10 percent; in all of the latter, nerve conduction studies indicated an axonal polyneuropathy in 14 percent. An age of 75 years or older was an independent risk factor for death (relative risk adjusted for the presence or absence of diabetes mellitus, 8.5; 95 percent confidence interval, 1.2 to 59.1), as was the presence of diabetes mellitus (age-adjusted relative risk, 5.1; 95 percent confidence interval, 1.5 to 17.3). This outbreak of West Nile meningoencephalitis in the New York City metropolitan area represents the first time this virus has been detected in the Western Hemisphere. Given the subsequent rapid spread of the virus, physicians along the eastern seaboard of the United States should consider West Nile virus infection in the differential diagnosis of encephalitis and viral meningitis during the summer months, especially in older patients and in those with muscle weakness.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                27 July 2020
                2020
                : 8
                : e9577
                Affiliations
                [1 ]Advanced Environmental Research Institute, University of North Texas , Denton, TX, USA
                [2 ]Department of Biological Sciences, University of North Texas , Denton, TX, USA
                [3 ]Department of Geography and the Environment, University of North Texas , Denton, TX, USA
                Article
                9577
                10.7717/peerj.9577
                7391972
                24180b8a-f8f0-49b3-9d76-48c526b25d9d
                © 2020 Kala et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 2 March 2020
                : 29 June 2020
                Funding
                Funded by: University of North Texas
                This work was supported in part by the Advanced Environmental Research Institute, the Department of Biological Sciences, and the Department of Geography and the Environment, all of the University of North Texas. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Ecology
                Virology
                Epidemiology
                Public Health
                Spatial and Geographic Information Science

                west nile virus,public health,self organizing maps,parallel coordinate plots,data mining

                Comments

                Comment on this article