0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The impact of stress and selected environmental factors on cows’ reproduction

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Invited review: Effects of heat stress on dairy cattle welfare.

          The effects of high ambient temperatures on production animals, once thought to be limited to tropical areas, has extended into northern latitudes in response to the increasing global temperature. The number of days where the temperature-humidity index (THI) exceeds the comfort threshold (>72) is increasing in the northern United States, Canada, and Europe. Compounded by the increasing number of dairy animals and the intensification of production, heat stress has become one of the most important challenges facing the dairy industry today. The objectives of this review were to present an overview of the effects of heat stress on dairy cattle welfare and highlight important research gaps in the literature. We will also briefly discuss current heat abatement strategies, as well as the sustainability of future heat stress management. Heat stress has negative effects on the health and biological functioning of dairy cows through depressed milk production and reduced reproductive performance. Heat stress can also compromise the affective state of dairy cows by inducing feelings of hunger and thirst, and we have highlighted the need for research efforts to examine the potential relationship between heat stress, frustration, aggression, and pain. Little work has examined how heat stress affects an animal's natural coping behaviors, as well as how the animal's evolutionary adaptations for thermoregulation are managed in modern dairy systems. More research is needed to identify improved comprehensive cow-side measurements that can indicate real-time responses to elevated ambient temperatures and that could be incorporated into heat abatement management decisions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Impact of heat stress on conception rate of dairy cows in the moderate climate considering different temperature-humidity index thresholds, periods relative to breeding, and heat load indices.

            The objectives of this retrospective study were to investigate the relationship between temperature-humidity index (THI) and conception rate (CR) of lactating dairy cows, to estimate a threshold for this relationship, and to identify periods of exposure to heat stress relative to breeding in an area of moderate climate. In addition, we compared three different heat load indices related to CR: mean THI, maximum THI, and number of hours above the mean THI threshold. The THI threshold for the influence of heat stress on CR was 73. It was statistically chosen based on the observed relationship between the mean THI at the day of breeding and the resulting CR. Negative effects of heat stress, however, were already apparent at lower levels of THI, and 1 hour of mean THI of 73 or more decreased the CR significantly. The CR of lactating dairy cows was negatively affected by heat stress both before and after the day of breeding. The greatest negative impact of heat stress on CR was observed 21 to 1 day before breeding. When the mean THI was 73 or more in this period, CR decreased from 31% to 12%. Compared with the average maximum THI and the total number of hours above a threshold of more than or 9 hours, the mean THI was the most sensitive heat load index relating to CR. These results indicate that the CR of dairy cows raised in the moderate climates is highly affected by heat stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Heat Stress in Dairy Cattle Alters Lipid Composition of Milk

              Heat stress, potentially affecting both the health of animals and the yield and composition of milk, occurs frequently in tropical, sub-tropical and temperate regions. A simulated acute heat stress experiment was conducted in controlled-climate chambers and milk samples collected before, during and after the heat challenge. Milk lipid composition, surveyed using LC-MS, showed significant changes in triacylglycerol (TAG) and polar lipid profiles. Heat stress (temperature-humidity index up to 84) was associated with a reduction in TAG groups containing short- and medium-chain fatty acids and a concomitant increase in those containing long-chain fatty acids. The abundance of five polar lipid classes including phosphatidylethanolamine, phosphatidylserine, phosphatidylcholine, lysophosphatidylcholine and glucosylceramide, was found to be significantly reduced during heat stress. Lysophosphatidylcholine, showing the greatest reduction in concentration, also displayed a differential response between heat tolerant and heat susceptible cows during heat stress. This phospholipid could be used as a heat stress biomarker for dairy cattle. Changes in TAG profile caused by heat stress are expected to modify the physical properties of milk fat, whereas the reduction of phospholipids may affect the nutritional value of milk. The results are discussed in relation to animal metabolism adaptation in the event of acute heat stress.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of Applied Animal Research
                Journal of Applied Animal Research
                Informa UK Limited
                0971-2119
                0974-1844
                January 01 2021
                August 04 2021
                January 01 2021
                : 49
                : 1
                : 318-323
                Affiliations
                [1 ]Department of Ruminant Science, West Pomeranian University of Technology, Szczecin, Poland
                [2 ]Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
                Article
                10.1080/09712119.2021.1960842
                23ff9b80-4773-48b3-a214-50df145fe5b1
                © 2021

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article