28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Selective fluorescence turn-on and ratiometric detection of organophosphate using dual-emitting Mn-doped ZnS nanocrystal probe.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Semiconductor nanocrystals (NCs) possess unique photoluminescent properties which can be used to design fluorescence probes for chemo/biosensing applications. Several have recently emerged that offer excellent turn-on or ratiometric fluorescence chemosensory protocols by sophisticated procedures, but it has been challenging to realize all of these advantages in a single construct. Herein, we develop an intrinsic dual-emitting Mn-doped ZnS nanocrystal-based probe that achieves this goal with turn-on and ratiometric fluorescence response for the determination of organophosphate (diethylphosphorothioate, DEP). The probe relies on the modification of dopamine dithiocarbamate on the surface of NCs and the modulation of dual emission through a photoinduced electron transfer process, which makes use of red fluorescence of Mn(2+) ions doped in the NCs as specific recognition for the target analyte and blue defect emission of the NCs as stable internal reference. In presence of DEP, the red emission of the probe is thus enhanced by switching off the electron transfer pathway, while the blue emission is almost unchanged. With the addition of different amounts DEP, the two emission intensity ratios gradually vary and display color changes from dark-blue to purple to red. Thus, this method generates turn-on and ratiometric fluorescence signals for quantitative and visual detection of the analyte. Significantly, the dual-emitting probe has been used to fabricate paper-based test strips for visual detection of DEP residues, which validate the method for its rapid, on-site, and visual identification.

          Related collections

          Author and article information

          Journal
          Anal. Chem.
          Analytical chemistry
          American Chemical Society (ACS)
          1520-6882
          0003-2700
          Dec 02 2014
          : 86
          : 23
          Affiliations
          [1 ] Institute of Intelligent Machines, Chinese Academy of Sciences , 350, Shushanhu Road, Hefei, Anhui 230031, China.
          Article
          10.1021/ac503134r
          25358128
          23d1d818-5a13-4c6a-870c-6da64d0ecd55
          History

          Comments

          Comment on this article