32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans.

      1 , , ,
      NeuroImage
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          At very high magnetic fields, GE BOLD fMRI is expected to contain nonspecific contributions and behave differently than HSE fMRI data. Similarly, the two approaches can conceivably suffer from different contributions to temporal instabilities in a times series that ultimately determine the contrast-to-noise ratio (CNR). We investigate the signal and signal fluctuation characteristics in GE and HSE fMRI data with the imaging parameters separately optimized for each contrast at 7 T. In HSE fMRI, activation-induced fractional signal change (DeltaS/S) decreased rapidly, and the ratio of standard deviations of image-to-image fluctuations due to physiological processes (sigmaPhys) to thermal noise (sigmaTherm) remained constant with increasing voxel volume. In contrast, DeltaS/S as well as volume of activated voxels was virtually independent of voxel size for GE BOLD, and sigma(Phys)/sigmaTherm increased with increasing voxel size. The ratio of BOLD signal changes (GE/HSE) was much closer to 1 in tissue areas compared to vessel areas. These observations led to the conclusions that the spatial extent of the activation-induced DeltaS/S was much broader in the GE data, and that the physiological processes that give rise to the temporal fluctuations lost coherence over millimeter distances in HSE compared to GE fMRI data. While further studies are needed to characterize it fully, sigmaPhys in HSE data was clearly different than in GE data. It was concluded that HSE imaging yields a significantly reduced amount of nonspecific signals compared to GE imaging, and, would be the method of choice (over GE) for high-resolution applications in humans.

          Related collections

          Author and article information

          Journal
          Neuroimage
          NeuroImage
          Elsevier BV
          1053-8119
          1053-8119
          Feb 01 2005
          : 24
          : 3
          Affiliations
          [1 ] Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA. yacoub@cmrr.umn.edu
          Article
          S1053-8119(04)00516-6
          10.1016/j.neuroimage.2004.09.002
          15652309
          23c96857-2a03-4bfa-85cd-62901b93f36d
          History

          Comments

          Comment on this article

          scite_
          196
          11
          167
          0
          Smart Citations
          196
          11
          167
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content103

          Cited by35