13
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Sex and Gender in Neurodegenerative Diseases

      Submit here before September 30, 2024

      About Neurodegenerative Diseases: 1.9 Impact Factor I 5.9 CiteScore I 0.648 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      On the Independent Origins of Complex Brains and Neurons

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Analysis of the origin and evolution of neurons is crucial for revealing principles of organization of neural circuits with unexpected implications for genomic sciences, biomedical applications and regenerative medicine. This article presents an overview of some controversial ideas about the origin and evolution of neurons and nervous systems, focusing on the independent origin of complex brains and possible independent origins of neurons. First, earlier hypotheses related to the origin of neurons are summarized. Second, the diversity of nervous systems and convergent evolution of complex brains in relation to current views about animal phylogeny is discussed. Third, the lineages of molluscs and basal metazoans are used as illustrated examples of multiple origins of complex brains and neurons. Finally, a hypothesis about the independent origin of complex brains, centralized nervous systems and neurons is outlined. Injury-associated mechanisms leading to secretion of signal peptides (and related molecules) can be considered as evolutionary predecessors of inter-neuronal signaling and the major factors in the appearance of neurons in the first place.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization.

          Sea anemones are seemingly primitive animals that, along with corals, jellyfish, and hydras, constitute the oldest eumetazoan phylum, the Cnidaria. Here, we report a comparative analysis of the draft genome of an emerging cnidarian model, the starlet sea anemone Nematostella vectensis. The sea anemone genome is complex, with a gene repertoire, exon-intron structure, and large-scale gene linkage more similar to vertebrates than to flies or nematodes, implying that the genome of the eumetazoan ancestor was similarly complex. Nearly one-fifth of the inferred genes of the ancestor are eumetazoan novelties, which are enriched for animal functions like cell signaling, adhesion, and synaptic transmission. Analysis of diverse pathways suggests that these gene "inventions" along the lineage leading to animals were likely already well integrated with preexisting eukaryotic genes in the eumetazoan progenitor.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phylogenomics revives traditional views on deep animal relationships.

            The origin of many of the defining features of animal body plans, such as symmetry, nervous system, and the mesoderm, remains shrouded in mystery because of major uncertainty regarding the emergence order of the early branching taxa: the sponge groups, ctenophores, placozoans, cnidarians, and bilaterians. The "phylogenomic" approach [1] has recently provided a robust picture for intrabilaterian relationships [2, 3] but not yet for more early branching metazoan clades. We have assembled a comprehensive 128 gene data set including newly generated sequence data from ctenophores, cnidarians, and all four main sponge groups. The resulting phylogeny yields two significant conclusions reviving old views that have been challenged in the molecular era: (1) that the sponges (Porifera) are monophyletic and not paraphyletic as repeatedly proposed [4-9], thus undermining the idea that ancestral metazoans had a sponge-like body plan; (2) that the most likely position for the ctenophores is together with the cnidarians in a "coelenterate" clade. The Porifera and the Placozoa branch basally with respect to a moderately supported "eumetazoan" clade containing the three taxa with nervous system and muscle cells (Cnidaria, Ctenophora, and Bilateria). This new phylogeny provides a stimulating framework for exploring the important changes that shaped the body plans of the early diverging phyla.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene.

              The independent evolution of morphological similarities is widespread. For simple traits, such as overall body colour, repeated transitions by means of mutations in the same gene may be common. However, for more complex traits, the possible genetic paths may be more numerous; the molecular mechanisms underlying their independent origins and the extent to which they are constrained to follow certain genetic paths are largely unknown. Here we show that a male wing pigmentation pattern involved in courtship display has been gained and lost multiple times in a Drosophila clade. Each of the cases we have analysed (two gains and two losses) involved regulatory changes at the pleiotropic pigmentation gene yellow. Losses involved the parallel inactivation of the same cis-regulatory element (CRE), with changes at a few nucleotides sufficient to account for the functional divergence of one element between two sibling species. Surprisingly, two independent gains of wing spots resulted from the co-option of distinct ancestral CREs. These results demonstrate how the functional diversification of the modular CREs of pleiotropic genes contributes to evolutionary novelty and the independent evolution of morphological similarities.
                Bookmark

                Author and article information

                Journal
                BBE
                Brain Behav Evol
                10.1159/issn.0006-8977
                Brain, Behavior and Evolution
                S. Karger AG
                978-3-8055-9376-2
                978-3-8055-9377-9
                0006-8977
                1421-9743
                2009
                December 2009
                21 December 2009
                : 74
                : 3
                : 177-190
                Affiliations
                Department of Neuroscience and McKnight Brain Institute, Gainesville, Fla., and Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Fla., USA
                Article
                258665 PMC2855278 Brain Behav Evol 2009;74:177–190
                10.1159/000258665
                PMC2855278
                20029182
                237e4dc2-37ae-4ca1-8965-ffe004bc8f35
                © 2009 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 2, References: 103, Pages: 14
                Categories
                Paper

                Geriatric medicine,Neurology,Cardiovascular Medicine,Neurosciences,Clinical Psychology & Psychiatry,Public health
                Cell lineages,Basal Metazoa,Hemichodata,Evolution of neurons,Neurotransmitters,Evolution of nervous systems,Genomes,Mollusca,Ctenophora

                Comments

                Comment on this article