217
views
1
recommends
+1 Recommend
1 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-wide variant analysis of simplex autism families with an integrative clinical-bioinformatics pipeline

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autism spectrum disorders (ASDs) are a group of developmental disabilities that affect social interaction and communication and are characterized by repetitive behaviors. There is now a large body of evidence that suggests a complex role of genetics in ASDs, in which many different loci are involved. Although many current population-scale genomic studies have been demonstrably fruitful, these studies generally focus on analyzing a limited part of the genome or use a limited set of bioinformatics tools. These limitations preclude the analysis of genome-wide perturbations that may contribute to the development and severity of ASD-related phenotypes. To overcome these limitations, we have developed and utilized an integrative clinical and bioinformatics pipeline for generating a more complete and reliable set of genomic variants for downstream analyses. Our study focuses on the analysis of three simplex autism families consisting of one affected child, unaffected parents, and one unaffected sibling. All members were clinically evaluated and widely phenotyped. Genotyping arrays and whole-genome sequencing were performed on each member, and the resulting sequencing data were analyzed using a variety of available bioinformatics tools. We searched for rare variants of putative functional impact that were found to be segregating according to de novo, autosomal recessive, X-linked, mitochondrial, and compound heterozygote transmission models. The resulting candidate variants included three small heterozygous copy-number variations (CNVs), a rare heterozygous de novo nonsense mutation in MYBBP1A located within exon 1, and a novel de novo missense variant in LAMB3. Our work demonstrates how more comprehensive analyses that include rich clinical data and whole-genome sequencing data can generate reliable results for use in downstream investigations.

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          De novo gene disruptions in children on the autistic spectrum.

          Exome sequencing of 343 families, each with a single child on the autism spectrum and at least one unaffected sibling, reveal de novo small indels and point substitutions, which come mostly from the paternal line in an age-dependent manner. We do not see significantly greater numbers of de novo missense mutations in affected versus unaffected children, but gene-disrupting mutations (nonsense, splice site, and frame shifts) are twice as frequent, 59 to 28. Based on this differential and the number of recurrent and total targets of gene disruption found in our and similar studies, we estimate between 350 and 400 autism susceptibility genes. Many of the disrupted genes in these studies are associated with the fragile X protein, FMRP, reinforcing links between autism and synaptic plasticity. We find FMRP-associated genes are under greater purifying selection than the remainder of genes and suggest they are especially dosage-sensitive targets of cognitive disorders. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Entrez Gene: gene-centered information at NCBI

            Entrez Gene (www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene) is NCBI's database for gene-specific information. It does not include all known or predicted genes; instead Entrez Gene focuses on the genomes that have been completely sequenced, that have an active research community to contribute gene-specific information, or that are scheduled for intense sequence analysis. The content of Entrez Gene represents the result of curation and automated integration of data from NCBI's Reference Sequence project (RefSeq), from collaborating model organism databases, and from many other databases available from NCBI. Records are assigned unique, stable and tracked integers as identifiers. The content (nomenclature, map location, gene products and their attributes, markers, phenotypes, and links to citations, sequences, variation details, maps, expression, homologs, protein domains and external databases) is updated as new information becomes available. Entrez Gene is a step forward from NCBI's LocusLink, with both a major increase in taxonomic scope and improved access through the many tools associated with NCBI Entrez.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC Genome Browser

              Summary: Track data hubs provide an efficient mechanism for visualizing remotely hosted Internet-accessible collections of genome annotations. Hub datasets can be organized, configured and fully integrated into the University of California Santa Cruz (UCSC) Genome Browser and accessed through the familiar browser interface. For the first time, individuals can use the complete browser feature set to view custom datasets without the overhead of setting up and maintaining a mirror. Availability and implementation: Source code for the BigWig, BigBed and Genome Browser software is freely available for non-commercial use at http://hgdownload.cse.ucsc.edu/admin/jksrc.zip, implemented in C and supported on Linux. Binaries for the BigWig and BigBed creation and parsing utilities may be downloaded at http://hgdownload.cse.ucsc.edu/admin/exe/. Binary Alignment/Map (BAM) and Variant Call Format (VCF)/tabix utilities are available from http://samtools.sourceforge.net/ and http://vcftools.sourceforge.net/. The UCSC Genome Browser is publicly accessible at http://genome.ucsc.edu. Contact: donnak@soe.ucsc.edu
                Bookmark

                Author and article information

                Journal
                Cold Spring Harb Mol Case Stud
                Cold Spring Harb Mol Case Stud
                cshmcs
                cshmcs
                Cold Spring Harbor Molecular Case Studies
                Cold Spring Harbor Laboratory Press
                2373-2865
                2373-2873
                October 2015
                : 1
                : 1
                : a000422
                Affiliations
                [1 ]Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
                [2 ]Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico;
                [3 ]Graduate Genetics Program, Stony Brook University, Stony Brook, New York 11794, USA;
                [4 ]Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
                [5 ]New York Genome Center, New York, New York 10013, USA;
                [6 ]Utah Foundation for Biomedical Research, Salt Lake City, Utah 84107, USA
                Author notes
                Corresponding author: gholsonjlyon@ 123456gmail.com
                Article
                jimnez-barrnMCS000422
                10.1101/mcs.a000422
                4850892
                27148569
                2360cb24-2362-4342-aa73-f7702e724458
                © 2015 Jiménez-Barrón et al.; Published by Cold Spring Harbor Laboratory Press

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial License, which permits reuse and redistribution, except for commercial purposes, provided that the original author and source are credited.

                History
                : 9 May 2015
                : 20 July 2015
                Page count
                Pages: 25
                Funding
                Funded by: Stanley Institute for Cognitive Genomics
                Funded by: National Cancer Institute http://dx.doi.org/10.13039/100000054
                Award ID: CA045508
                Categories
                Research Article

                autism
                autism

                Comments

                Comment on this article