40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Mechanisms of Dermal Aging and Antiaging Approaches

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The dermis is primarily composed of the extracellular matrix (ECM) and fibroblasts. During the aging process, the dermis undergoes significant changes. Collagen, which is a major component of ECM, becomes fragmented and coarsely distributed, and its total amount decreases. This is mainly due to increased activity of matrix metalloproteinases, and impaired transforming growth factor-β signaling induced by reactive oxygen species generated during aging. The reduction in the amount of collagen hinders the mechanical interaction between fibroblasts and the ECM, and consequently leads to the deterioration of fibroblast function and further decrease in the amount of dermal collagen. Other ECM components, including elastic fibers, glycosaminglycans (GAGs), and proteoglycans (PGs), also change during aging, ultimately leading to a reduction in the amount of functional components. Elastic fibers decrease in intrinsically aged skin, but accumulate abnormally in photoaged skin. The changes in the levels of GAGs and PGs are highly diverse, and previous studies have reported conflicting results. A reduction in the levels of functional dermal components results in the emergence of clinical aging features, such as wrinkles and reduced elasticity. Various antiaging approaches, including topicals, energy-based procedures, and dermal fillers, can restore the molecular features of dermal aging with clinical efficacy. This review summarizes the current understanding of skin aging at the molecular level, and associated treatments, to put some of the new antiaging technology that has emerged in this rapidly expanding field into molecular context.

          Related collections

          Most cited references141

          • Record: found
          • Abstract: found
          • Article: not found

          Structure and function of matrix metalloproteinases and TIMPs.

          Matrix metalloproteinases (MMPs), also called matrixins, function in the extracellular environment of cells and degrade both matrix and non-matrix proteins. They play central roles in morphogenesis, wound healing, tissue repair and remodelling in response to injury, e.g. after myocardial infarction, and in progression of diseases such as atheroma, arthritis, cancer and chronic tissue ulcers. They are multi-domain proteins and their activities are regulated by tissue inhibitors of metalloproteinases (TIMPs). This review introduces the members of the MMP family and discusses their domain structure and function, proenyme activation, the mechanism of inhibition by TIMPs and their significance in physiology and pathology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathophysiology of premature skin aging induced by ultraviolet light.

            Long-term exposure to ultraviolet irradiation from sunlight causes premature skin aging (photoaging), characterized in part by wrinkles, altered pigmentation, and loss of skin tone. Photoaged skin displays prominent alterations in the collagenous extracellular matrix of connective tissue. We investigated the role of matrix-degrading metalloproteinases, a family of proteolytic enzymes, as mediators of collagen damage in photoaging. We studied 59 whites (33 men and 26 women, ranging in age from 21 to 58 years) with light-to-moderate skin pigmentation, none of whom had current or prior skin disease. Only some of the participants were included in each of the studies. We irradiated their buttock skin with fluorescent ultraviolet lights under standard conditions and obtained skin samples from irradiated and nonirradiated areas by keratome or punch biopsy. In some studies, tretinoin and its vehicle were applied to skin under occlusion 48 hours before ultraviolet irradiation. The expression of matrix metalloproteinases was determined by in situ hybridization, immunohistology, and in situ zymography. Irradiation-induced degradation of skin collagen was measured by radioimmunoassay of soluble cross-linked telopeptides. The protein level of tissue inhibitor of matrix metalloproteinases type 1 was determined by Western blot analysis. A single exposure to ultraviolet irradiation increased the expression of three matrix metalloproteinases -- collagenase, a 92-kd gelatinase, and stromelysin -- in skin connective tissue and outer skin layers, as compared with nonirradiated skin. The degradation of endogenous type I collagen fibrils was increased by 58 percent in irradiated skin, as compared with nonirradiated skin. Collagenase and gelatinase activity remained maximally elevated (4.4 and 2.3 times, respectively) for seven days with four exposures to ultraviolet irradiation, delivered at two-day intervals, as compared with base-line levels. Pretreatment of skin with tretinoin (all-trans-retinoic acid) inhibited the induction of matrix metalloproteinase proteins and activity (by 70 to 80 percent) in both connective tissue and outer layers of irradiated skin. Ultraviolet irradiation also induced tissue inhibitor of matrix metalloproteinases-1, which regulates the enzyme. Induction of the inhibitor was not affected by tretinoin. Multiple exposures to ultraviolet irradiation lead to sustained elevations of matrix metalloproteinases that degrade skin collagen and may contribute to photoaging. Treatment with topical tretinoin inhibits irradiation-induced matrix metalloproteinases but not their endogenous inhibitor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AP-1 as a regulator of cell life and death.

              The transcription factor AP-1 (activator protein-1) is involved in cellular proliferation, transformation and death. Using mice and cells lacking AP-1 components, the target-genes and molecular mechanisms mediating these processes were recently identified. Interestingly, the growth-promoting activity of c-Jun is mediated by repression of tumour suppressors, as well as upregulation of positive cell cycle regulators. Mostly, c-Jun is a positive regulator of cell proliferation, whereas JunB has the converse effect. The intricate relationships between the different Jun proteins, their activities and the mechanisms that mediate them will be discussed.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                29 April 2019
                May 2019
                : 20
                : 9
                : 2126
                Affiliations
                [1 ]Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Korea; spellbound00@ 123456hanmail.net (J.-W.S.); soonhyo17@ 123456hanmail.net (S.-H.K.); dhcjy1101@ 123456gmail.net (J.-Y.C.); jina1@ 123456snu.ac.kr (J.-I.N.); chhuh@ 123456snu.ac.kr (C.-H.H.); hyeryung.choi@ 123456gmail.com (H.-R.C.)
                [2 ]Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea
                Author notes
                [* ]Correspondence: gcpark@ 123456snu.ac.kr ; Tel.: +82-31-787-7311; Fax: +82-2-3675-1187
                Author information
                https://orcid.org/0000-0002-7295-5725
                Article
                ijms-20-02126
                10.3390/ijms20092126
                6540032
                31036793
                233acb7a-a876-4a57-a70d-760aa73c3eb2
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 12 April 2019
                : 28 April 2019
                Categories
                Review

                Molecular biology
                dermal aging,collagen,fibroblast,elastic fiber,glycosaminglycans,hyaluronic acid,proteoglycans

                Comments

                Comment on this article