32
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Telemedicine in ophthalmology in view of the emerging COVID-19 outbreak

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Technological advances in recent years have resulted in the development and implementation of various modalities and techniques enabling medical professionals to remotely diagnose and treat numerous medical conditions in diverse medical fields, including ophthalmology. Patients who require prolonged isolation until recovery, such as those who suffer from COVID-19, present multiple therapeutic dilemmas to their caregivers. Therefore, utilizing remote care in the daily workflow would be a valuable tool for the diagnosis and treatment of acute and chronic ocular conditions in this challenging clinical setting. Our aim is to review the latest technological and methodical advances in teleophthalmology and highlight their implementation in screening and managing various ocular conditions. We present them as well as potential diagnostic and treatment applications in view of the recent SARS-CoV-2 virus outbreak.

          Methods

          A computerized search from January 2017 up to March 2020 of the online electronic database PubMed was performed, using the following search strings: “telemedicine,” “telehealth,” and “ophthalmology.” More generalized complementary contemporary research data regarding the COVID-19 pandemic was also obtained from the PubMed database.

          Results

          A total of 312 records, including COVID-19-focused studies, were initially identified. After exclusion of non-relevant, non-English, and duplicate studies, a total of 138 records were found eligible. Ninety records were included in the final qualitative analysis.

          Conclusion

          Teleophthalmology is an effective screening and management tool for a range of adult and pediatric acute and chronic ocular conditions. It is mostly utilized in screening of retinal conditions such as retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration; in diagnosing anterior segment condition; and in managing glaucoma. With improvements in image processing, and better integration of the patient’s medical record, teleophthalmology should become a more accepted modality, all the more so in circumstances where social distancing is inflicted upon us.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study

          Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64–128·55; p=0·0033) on admission. Median duration of viral shedding was 20·0 days (IQR 17·0–24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors. The longest observed duration of viral shedding in survivors was 37 days. Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Coronavirus Disease 2019 in Children — United States, February 12–April 2, 2020

            On April 6, 2020, this report was posted online as an MMWR Early Release. As of April 2, 2020, the coronavirus disease 2019 (COVID-19) pandemic has resulted in >890,000 cases and >45,000 deaths worldwide, including 239,279 cases and 5,443 deaths in the United States ( 1 , 2 ). In the United States, 22% of the population is made up of infants, children, and adolescents aged * Includes infants, children, and adolescents. † Excludes 23 cases in children aged <18 years with missing report date. § Date of report available starting February 24, 2020; reported cases include any with onset on or after February 12, 2020. The figure is a combination epidemiological curve and line graph showing 2,549 cases of COVID-19 in children aged <18 years in the United States, by date reported to CDC during February 24–April 2, 2020. Among all 2,572 COVID-19 cases in children aged <18 years, the median age was 11 years (range 0–17 years). Nearly one third of reported pediatric cases (813; 32%) occurred in children aged 15–17 years, followed by those in children aged 10–14 years (682; 27%). Among younger children, 398 (15%) occurred in children aged <1 year, 291 (11%) in children aged 1–4 years, and 388 (15%) in children aged 5–9 years. Among 2,490 pediatric COVID-19 cases for which sex was known, 1,408 (57%) occurred in males; among cases in adults aged ≥18 years for which sex was known, 53% (75,450 of 143,414) were in males. Among 184 (7.2%) cases in children aged <18 years with known exposure information, 16 (9%) were associated with travel and 168 (91%) had exposure to a COVID-19 patient in the household or community. Data on signs and symptoms of COVID-19 were available for 291 of 2,572 (11%) pediatric cases and 10,944 of 113,985 (9.6%) cases among adults aged 18–64 years (Table). Whereas fever (subjective or documented), cough, and shortness of breath were commonly reported among adult patients aged 18–64 years (93% reported at least one of these), these signs and symptoms were less frequently reported among pediatric patients (73%). Among those with known information on each symptom, 56% of pediatric patients reported fever, 54% reported cough, and 13% reported shortness of breath, compared with 71%, 80%, and 43%, respectively, reporting these signs and symptoms among patients aged 18–64 years. Myalgia, sore throat, headache, and diarrhea were also less commonly reported by pediatric patients. Fifty-three (68%) of the 78 pediatric cases reported not to have fever, cough, or shortness of breath had no symptoms reported, but could not be classified as asymptomatic because of incomplete symptom information. One (1.3%) additional pediatric patient with a positive test result for SARS-CoV-2 was reported to be asymptomatic. TABLE Signs and symptoms among 291 pediatric (age <18 years) and 10,944 adult (age 18–64 years) patients* with laboratory-confirmed COVID-19 — United States, February 12–April 2, 2020 Sign/Symptom No. (%) with sign/symptom Pediatric Adult Fever, cough, or shortness of breath† 213 (73) 10,167 (93) Fever§ 163 (56) 7,794 (71) Cough 158 (54) 8,775 (80) Shortness of breath 39 (13) 4,674 (43) Myalgia 66 (23) 6,713 (61) Runny nose¶ 21 (7.2) 757 (6.9) Sore throat 71 (24) 3,795 (35) Headache 81 (28) 6,335 (58) Nausea/Vomiting 31 (11) 1,746 (16) Abdominal pain¶ 17 (5.8) 1,329 (12) Diarrhea 37 (13) 3,353 (31) *Cases were included in the denominator if they had a known symptom status for fever, cough, shortness of breath, nausea/vomiting, and diarrhea. Total number of patients by age group: <18 years (N = 2,572), 18–64 years (N = 113,985). † Includes all cases with one or more of these symptoms. § Patients were included if they had information for either measured or subjective fever variables and were considered to have a fever if “yes” was indicated for either variable. ¶ Runny nose and abdominal pain were less frequently completed than other symptoms; therefore, percentages with these symptoms are likely underestimates. Information on hospitalization status was available for 745 (29%) cases in children aged <18 years and 35,061 (31%) cases in adults aged 18–64 years. Among children with COVID-19, 147 (estimated range = 5.7%–20%) were reported to be hospitalized, with 15 (0.58%–2.0%) admitted to an ICU (Figure 2). Among adults aged 18–64 years, the percentages of patients who were hospitalized (10%–33%), including those admitted to an ICU (1.4%–4.5%), were higher. Children aged <1 year accounted for the highest percentage (15%–62%) of hospitalization among pediatric patients with COVID-19. Among 95 children aged <1 year with known hospitalization status, 59 (62%) were hospitalized, including five who were admitted to an ICU. The percentage of patients hospitalized among those aged 1–17 years was lower (estimated range = 4.1%–14%), with little variation among age groups (Figure 2). FIGURE 2 COVID-19 cases among children* aged <18 years, among those with known hospitalization status (N = 745),† by age group and hospitalization status — United States, February 12–April 2, 2020 Abbreviation: ICU = intensive care unit. * Includes infants, children, and adolescents. † Number of children missing hospitalization status by age group: <1 year (303 of 398; 76%); 1–4 years (189 of 291; 65%); 5–9 years (275 of 388; 71%); 10–14 years (466 of 682; 68%); 15–17 years (594 of 813; 73%). The figure is a bar chart showing 745 U.S. COVID-19 cases among children aged <18 years with known hospitalization status, by age group and hospitalization status during February 12–April 2, 2020. Among 345 pediatric cases with information on underlying conditions, 80 (23%) had at least one underlying condition. The most common underlying conditions were chronic lung disease (including asthma) (40), cardiovascular disease (25), and immunosuppression (10). Among the 295 pediatric cases for which information on both hospitalization status and underlying medical conditions was available, 28 of 37 (77%) hospitalized patients, including all six patients admitted to an ICU, had one or more underlying medical condition; among 258 patients who were not hospitalized, 30 (12%) patients had underlying conditions. Three deaths were reported among the pediatric cases included in this analysis; however, review of these cases is ongoing to confirm COVID-19 as the likely cause of death. Discussion Among 149,082 U.S. cases of COVID-19 reported as of April 2, 2020, for which age was known, 2,572 (1.7%) occurred in patients aged <18 years. In comparison, persons aged <18 years account for 22% of the U.S. population ( 3 ). Although infants <1 year accounted for 15% of pediatric COVID-19 cases, they remain underrepresented among COVID-19 cases in patients of all ages (393 of 149,082; 0.27%) compared with the percentage of the U.S. population aged <1 year (1.2%) ( 3 ). Relatively few pediatric COVID-19 cases were hospitalized (5.7%–20%; including 0.58%–2.0% admitted to an ICU), consistent with previous reports that COVID-19 illness often might have a mild course among younger patients ( 4 , 5 ). Hospitalization was most common among pediatric patients aged <1 year and those with underlying conditions. In addition, 73% of children for whom symptom information was known reported the characteristic COVID-19 signs and symptoms of fever, cough, or shortness of breath. These findings are largely consistent with a report on pediatric COVID-19 patients aged <16 years in China, which found that only 41.5% of pediatric patients had fever, 48.5% had cough, and 1.8% were admitted to an ICU ( 4 ). A second report suggested that although pediatric COVID-19 patients infrequently have severe outcomes, the infection might be more severe among infants ( 5 ). In the current analysis, 59 of 147 pediatric hospitalizations, including five of 15 pediatric ICU admissions, were among children aged <1 year; however, most reported U.S. cases in infants had unknown hospitalization status. In this preliminary analysis of U.S. pediatric COVID-19 cases, a majority (57%) of patients were males. Several studies have reported a majority of COVID-19 cases among males ( 4 , 9 ), and an analysis of 44,000 COVID-19 cases in patients of all ages in China reported a higher case-fatality rate among men than among women ( 10 ). However, the same report, as well as a separate analysis of 2,143 pediatric COVID-19 cases from China, detected no substantial difference in the number of cases among males and females ( 5 , 10 ). Reasons for any potential difference in COVID-19 incidence or severity between males and females are unknown. In the present analysis, the predominance of males in all pediatric age groups, including patients aged <1 year, suggests that biologic factors might play a role in any differences in COVID-19 susceptibility by sex. The findings in this report are subject to at least four limitations. First, because of the high workload associated with COVID-19 response activities on local, state, and territorial public health personnel, a majority of pediatric cases were missing data on disease symptoms, severity, or underlying conditions. Data for many variables are unlikely to be missing at random, and as such, these results must be interpreted with caution. Because of the high percentage of missing data, statistical comparisons could not be conducted. Second, because many cases occurred only days before publication of this report, the outcome for many patients is unknown, and this analysis might underestimate severity of disease or symptoms that manifested later in the course of illness. Third, COVID-19 testing practices differ across jurisdictions and might also differ across age groups. In many areas, prioritization of testing for severely ill patients likely occurs, which would result in overestimation of the percentage of patients with COVID-19 infection who are hospitalized (including those treated in an ICU) among all age groups. Finally, this analysis compares clinical characteristics of pediatric cases (persons aged <18 years) with those of cases among adults aged 18–64 years. Severe COVID-19 disease appears to be more common among adults at the high end of this age range ( 6 ), and therefore cases in young adults might be more similar to those among children than suggested by the current analysis. As the number of COVID-19 cases continues to increase in many parts of the United States, it will be important to adapt COVID-19 surveillance strategies to maintain collection of critical case information without overburdening jurisdiction health departments. National surveillance will increasingly be complemented by focused surveillance systems collecting comprehensive case information on a subset of cases across various health care settings. These systems will provide detailed information on the evolving COVID-19 incidence and risk factors for infection and severe disease. More systematic and detailed collection of underlying condition data among pediatric patients would be helpful to understand which children might be at highest risk for severe COVID-19 illness. This preliminary examination of characteristics of COVID-19 disease among children in the United States suggests that children do not always have fever or cough as reported signs and symptoms. Although most cases reported among children to date have not been severe, clinicians should maintain a high index of suspicion for COVID-19 infection in children and monitor for progression of illness, particularly among infants and children with underlying conditions. However, these findings must be interpreted with caution because of the high percentage of cases missing data on important characteristics. Because persons with asymptomatic and mild disease, including children, are likely playing a role in transmission and spread of COVID-19 in the community, social distancing and everyday preventive behaviors are recommended for persons of all ages to slow the spread of the virus, protect the health care system from being overloaded, and protect older adults and persons of any age with serious underlying medical conditions. Recommendations for reducing the spread of COVID-19 by staying at home and practicing strategies such as respiratory hygiene, wearing cloth face coverings when around others, and others are available on CDC’s coronavirus website at https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html. Summary What is already known about this topic? Data from China suggest that pediatric coronavirus disease 2019 (COVID-19) cases might be less severe than cases in adults and that children (persons aged <18 years) might experience different symptoms than adults. What is added by this report? In this preliminary description of pediatric U.S. COVID-19 cases, relatively few children with COVID-19 are hospitalized, and fewer children than adults experience fever, cough, or shortness of breath. Severe outcomes have been reported in children, including three deaths. What are the implications for public health practice? Pediatric COVID-19 patients might not have fever or cough. Social distancing and everyday preventive behaviors remain important for all age groups because patients with less serious illness and those without symptoms likely play an important role in disease transmission.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Can the Coronavirus Disease 2019 (COVID-19) Affect the Eyes? A Review of Coronaviruses and Ocular Implications in Humans and Animals

              ABSTRACT In December 2019, a novel coronavirus (CoV) epidemic, caused by the severe acute respiratory syndrome coronavirus – 2 (SARS-CoV-2) emerged from China. This virus causes the coronavirus disease 2019 (COVID-19). Since then, there have been anecdotal reports of ocular infection. The ocular implications of human CoV infections have not been widely studied. However, CoVs have been known to cause various ocular infections in animals. Clinical entities such as conjunctivitis, anterior uveitis, retinitis, and optic neuritis have been documented in feline and murine models. In this article, the current evidence suggesting possible human CoV infection of ocular tissue is reviewed. The review article will also highlight animal CoVs and their associated ocular infections. We hope that this article will serve as a start for further research into the ocular implications of human CoV infections.
                Bookmark

                Author and article information

                Contributors
                e_blumenthal@rambam.health.gov.il
                Journal
                Graefes Arch Clin Exp Ophthalmol
                Graefes Arch. Clin. Exp. Ophthalmol
                Graefe's Archive for Clinical and Experimental Ophthalmology
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0721-832X
                1435-702X
                19 August 2020
                : 1-12
                Affiliations
                [1 ]GRID grid.413731.3, ISNI 0000 0000 9950 8111, Department of Ophthalmology, , Rambam Health Care Campus, ; P.O.B 9602, 31096 Haifa, Israel
                [2 ]GRID grid.6451.6, ISNI 0000000121102151, Ruth and Bruce Rappaport Faculty of Medicine, , Technion - Israel Institute of Technology, ; Haifa, Israel
                Article
                4879
                10.1007/s00417-020-04879-2
                7436071
                32813110
                233010dc-1de6-4cd5-ae85-b85591816437
                © Springer-Verlag GmbH Germany, part of Springer Nature 2020

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 29 April 2020
                : 23 July 2020
                : 30 July 2020
                Categories
                Review Article

                Ophthalmology & Optometry
                telemedicine,telehealth,teleophthalmology,covid-19,sars-cov-2,remote care
                Ophthalmology & Optometry
                telemedicine, telehealth, teleophthalmology, covid-19, sars-cov-2, remote care

                Comments

                Comment on this article