1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Continuous medium chain carboxylic acids production from excess sludge by granular chain-elongation process

      , , , ,
      Journal of Hazardous Materials
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: not found
          • Article: not found

          Microplastics in sewage sludge from the wastewater treatment plants in China

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chain Elongation with Reactor Microbiomes: Open-Culture Biotechnology To Produce Biochemicals.

            Chain elongation into medium-chain carboxylates, such as n-caproate and n-caprylate, with ethanol as an electron donor and with open cultures of microbial consortia (i.e., reactor microbiomes) under anaerobic conditions is being developed as a biotechnological production platform. The goal is to use the high thermodynamic efficiency of anaerobic fermentation to convert organic biomass or organic wastes into valuable biochemicals that can be extracted. Several liter-scale studies have been completed and a first pilot-plant study is underway. However, the underlying microbial pathways are not always well understood. In addition, an interdisciplinary approach with knowledge from fields ranging from microbiology and chemical separations to biochemistry and environmental engineering is required. To bring together research from different fields, we reviewed the literature starting with the microbiology and ending with the bioprocess engineering studies that already have been performed. Because understanding the microbial pathways is so important to predict and steer performance, we delved into a stoichiometric and thermodynamic model that sheds light on the effect of substrate ratios and environmental conditions on product formation. Finally, we ended with an outlook.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features.

              Clostridium kluyveri is unique among the clostridia; it grows anaerobically on ethanol and acetate as sole energy sources. Fermentation products are butyrate, caproate, and H2. We report here the genome sequence of C. kluyveri, which revealed new insights into the metabolic capabilities of this well studied organism. A membrane-bound energy-converting NADH:ferredoxin oxidoreductase (RnfCDGEAB) and a cytoplasmic butyryl-CoA dehydrogenase complex (Bcd/EtfAB) coupling the reduction of crotonyl-CoA to butyryl-CoA with the reduction of ferredoxin represent a new energy-conserving module in anaerobes. The genes for NAD-dependent ethanol dehydrogenase and NAD(P)-dependent acetaldehyde dehydrogenase are located next to genes for microcompartment proteins, suggesting that the two enzymes, which are isolated together in a macromolecular complex, form a carboxysome-like structure. Unique for a strict anaerobe, C. kluyveri harbors three sets of genes predicted to encode for polyketide/nonribosomal peptide synthetase hybrides and one set for a nonribosomal peptide synthetase. The latter is predicted to catalyze the synthesis of a new siderophore, which is formed under iron-deficient growth conditions.
                Bookmark

                Author and article information

                Journal
                Journal of Hazardous Materials
                Journal of Hazardous Materials
                Elsevier BV
                03043894
                January 2021
                January 2021
                : 402
                : 123471
                Article
                10.1016/j.jhazmat.2020.123471
                232ee7fe-dbd2-4b5c-b78c-756519085d3e
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article