56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ecology of Root Colonizing Massilia (Oxalobacteraceae)

      research-article
      1 , 2 , 2 , 1 , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ecologically meaningful classification of bacterial populations is essential for understanding the structure and function of bacterial communities. As in soils, the ecological strategy of the majority of root-colonizing bacteria is mostly unknown. Among those are Massilia (Oxalobacteraceae), a major group of rhizosphere and root colonizing bacteria of many plant species.

          Methodology/Principal Findings

          The ecology of Massilia was explored in cucumber root and seed, and compared to that of Agrobacterium population, using culture-independent tools, including DNA-based pyrosequencing, fluorescence in situ hybridization and quantitative real-time PCR. Seed- and root-colonizing Massilia were primarily affiliated with other members of the genus described in soil and rhizosphere. Massilia colonized and proliferated on the seed coat, radicle, roots, and also on hyphae of phytopathogenic Pythium aphanidermatum infecting seeds. High variation in Massilia abundance was found in relation to plant developmental stage, along with sensitivity to plant growth medium modification (amendment with organic matter) and potential competitors. Massilia absolute abundance and relative abundance (dominance) were positively related, and peaked (up to 85%) at early stages of succession of the root microbiome. In comparison, variation in abundance of Agrobacterium was moderate and their dominance increased at later stages of succession.

          Conclusions

          In accordance with contemporary models for microbial ecology classification, copiotrophic and competition-sensitive root colonization by Massilia is suggested. These bacteria exploit, in a transient way, a window of opportunity within the succession of communities within this niche.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Living in a fungal world: impact of fungi on soil bacterial niche development.

          The colonization of land by plants appears to have coincided with the appearance of mycorrhiza-like fungi. Over evolutionary time, fungi have maintained their prominent role in the formation of mycorrhizal associations. In addition, however, they have been able to occupy other terrestrial niches of which the decomposition of recalcitrant organic matter is perhaps the most remarkable. This implies that, in contrast to that of aquatic organic matter decomposition, bacteria have not been able to monopolize decomposition processes in terrestrial ecosystems. The emergence of fungi in terrestrial ecosystems must have had a strong impact on the evolution of terrestrial bacteria. On the one hand, potential decomposition niches, e.g. lignin degradation, have been lost for bacteria, whereas on the other hand the presence of fungi has itself created new bacterial niches. Confrontation between bacteria and fungi is ongoing, and from studying contemporary interactions, we can learn about the impact that fungi presently have, and have had in the past, on the ecology and evolution of terrestrial bacteria. In the first part of this review, the focus is on niche differentiation between soil bacteria and fungi involved in the decomposition of plant-derived organic matter. Bacteria and fungi are seen to compete for simple plant-derived substrates and have developed antagonistic strategies. For more recalcitrant organic substrates, e.g. cellulose and lignin, both competitive and mutualistic strategies appear to have evolved. In the second part of the review, bacterial niches with respect to the utilization of fungal-derived substrates are considered. Here, several lines of development can be recognized, ranging from mutualistic exudate-consuming bacteria that are associated with fungal surfaces to endosymbiotic and mycophagous bacteria. In some cases, there are indications of fungal specific selection in fungus-associated bacteria, and possible mechanisms for such selection are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Toward an ecological classification of soil bacteria.

            Although researchers have begun cataloging the incredible diversity of bacteria found in soil, we are largely unable to interpret this information in an ecological context, including which groups of bacteria are most abundant in different soils and why. With this study, we examined how the abundances of major soil bacterial phyla correspond to the biotic and abiotic characteristics of the soil environment to determine if they can be divided into ecologically meaningful categories. To do this, we collected 71 unique soil samples from a wide range of ecosystems across North America and looked for relationships between soil properties and the relative abundances of six dominant bacterial phyla (Acidobacteria, Bacteroidetes, Firmicutes, Actinobacteria, alpha-Proteobacteria, and the beta-Proteobacteria). Of the soil properties measured, net carbon (C) mineralization rate (an index of C availability) was the best predictor of phylum-level abundances. There was a negative correlation between Acidobacteria abundance and C mineralization rates (r2 = 0.26, P < 0.001), while the abundances of beta-Proteobacteria and Bacteroidetes were positively correlated with C mineralization rates (r2 = 0.35, P < 0.001 and r2 = 0.34, P < 0.001, respectively). These patterns were explored further using both experimental and meta-analytical approaches. We amended soil cores from a specific site with varying levels of sucrose over a 12-month period to maintain a gradient of elevated C availabilities. This experiment confirmed our survey results: there was a negative relationship between C amendment level and the abundance of Acidobacteria (r2 = 0.42, P < 0.01) and a positive relationship for both Bacteroidetes and beta-Proteobacteria (r2 = 0.38 and 0.70, respectively; P < 0.01 for each). Further support for a relationship between the relative abundances of these bacterial phyla and C availability was garnered from an analysis of published bacterial clone libraries from bulk and rhizosphere soils. Together our survey, experimental, and meta-analytical results suggest that certain bacterial phyla can be differentiated into copiotrophic and oligotrophic categories that correspond to the r- and K-selected categories used to describe the ecological attributes of plants and animals. By applying the copiotroph-oligotroph concept to soil microorganisms we can make specific predictions about the ecological attributes of various bacterial taxa and better understand the structure and function of soil bacterial communities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The mycorrhiza helper bacteria revisited.

              In natural conditions, mycorrhizal fungi are surrounded by complex microbial communities, which modulate the mycorrhizal symbiosis. Here, the focus is on the so-called mycorrhiza helper bacteria (MHB). This concept is revisited, and the distinction is made between the helper bacteria, which assist mycorrhiza formation, and those that interact positively with the functioning of the symbiosis. After considering some examples of MHB from the literature, the ecological and evolutionary implications of the relationships of MHB with mycorrhizal fungi are discussed. The question of the specificity of the MHB effect is addressed, and an assessment is made of progress in understanding the mechanisms of the MHB effect, which has been made possible through the development of genomics. Finally, clear evidence is presented suggesting that some MHB promote the functioning of the mycorrhizal symbiosis. This is illustrated for three critical functions of practical significance: nutrient mobilization from soil minerals, fixation of atmospheric nitrogen, and protection of plants against root pathogens. The review concludes with discussion of future research priorities regarding the potentially very fruitful concept of MHB.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                11 July 2012
                : 7
                : 7
                : e40117
                Affiliations
                [1 ]Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Bet Dagan, Israel
                [2 ]The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
                Virginia Tech, United States of America
                Author notes

                Conceived and designed the experiments: MO YH DM. Performed the experiments: MO. Analyzed the data: MO. Contributed reagents/materials/analysis tools: MO. Wrote the paper: MO.

                Article
                PONE-D-12-03733
                10.1371/journal.pone.0040117
                3394795
                22808103
                231ce0d9-5ac2-481c-be1e-6303b950a698
                Ofek et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 1 February 2012
                : 1 June 2012
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Ecology
                Microbial Ecology
                Plant Ecology
                Population Ecology
                Soil Ecology
                Microbiology
                Microbial Ecology
                Plant Microbiology
                Plant Science
                Botany
                Plant Morphology
                Plant Microbiology
                Plant Pathology
                Plant Physiology
                Plants

                Uncategorized
                Uncategorized

                Comments

                Comment on this article