35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      RAG and HMGB1 create a large bend in the 23RSS in the V(D)J recombination synaptic complexes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During V(D)J recombination, recombination activating gene proteins RAG1 and RAG2 generate DNA double strand breaks within a paired complex (PC) containing two complementary recombination signal sequences (RSSs), the 12RSS and 23RSS, which differ in the length of the spacer separating heptamer and nonamer elements. Despite the central role of the PC in V(D)J recombination, little is understood about its structure. Here, we use fluorescence resonance energy transfer to investigate the architecture of the 23RSS in the PC. Energy transfer was detected in 23RSS substrates in which the donor and acceptor fluorophores flanked the entire RSS, and was optimal under conditions that yield a cleavage-competent PC. The data are most easily explained by a dramatic bend in the 23RSS that reduces the distance between these flanking regions from >160 Å in the linear substrate to <80 Å in the PC. Analysis of multiple fluorescent substrates together with molecular dynamics modeling yielded a model in which the 23RSS adopts a U shape in the PC, with the spacer located centrally within the bend. We propose that this large bend facilitates simultaneous recognition of the heptamer and nonamer, is critical for proper positioning of the active site and contributes to the 12/23 rule.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          V(D)J recombination: mechanisms of initiation.

          V(D)J recombination assembles immunoglobulin and T cell receptor genes during lymphocyte development through a series of carefully orchestrated DNA breakage and rejoining events. DNA cleavage requires a series of protein-DNA complexes containing the RAG1 and RAG2 proteins and recombination signals that flank the recombining gene segments. In this review, we discuss recent advances in our understanding of the function and domain organization of the RAG proteins, the composition and structure of RAG-DNA complexes, and the pathways that lead to the formation of these complexes. We also consider the functional significance of RAG-mediated histone recognition and ubiquitin ligase activities, and the role played by RAG in ensuring proper repair of DNA breaks made during V(D)J recombination. Finally, we propose a model for the formation of RAG-DNA complexes that involves anchoring of RAG1 at the recombination signal nonamer and RAG2-dependent surveillance of adjoining DNA for suitable spacer and heptamer sequences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            V(D)J recombination: RAG proteins, repair factors, and regulation.

            V(D)J recombination is the specialized DNA rearrangement used by cells of the immune system to assemble immunoglobulin and T-cell receptor genes from the preexisting gene segments. Because there is a large choice of segments to join, this process accounts for much of the diversity of the immune response. Recombination is initiated by the lymphoid-specific RAG1 and RAG2 proteins, which cooperate to make double-strand breaks at specific recognition sequences (recombination signal sequences, RSSs). The neighboring coding DNA is converted to a hairpin during breakage. Broken ends are then processed and joined with the help of several factors also involved in repair of radiation-damaged DNA, including the DNA-dependent protein kinase (DNA-PK) and the Ku, Artemis, DNA ligase IV, and Xrcc4 proteins, and possibly histone H2AX and the Mre11/Rad50/Nbs1 complex. There may be other factors not yet known. V(D)J recombination is strongly regulated by limiting access to RSS sites within chromatin, so that particular sites are available only in certain cell types and developmental stages. The roles of enhancers, histone acetylation, and chromatin remodeling factors in controlling accessibility are discussed. The RAG proteins are also capable of transposing RSS-ended fragments into new DNA sites. This transposition helps to explain the mechanism of RAG action and supports earlier proposals that V(D)J recombination evolved from an ancient mobile DNA element.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extreme bendability of DNA less than 100 base pairs long revealed by single-molecule cyclization.

              The classical view of DNA posits that DNA must be stiff below the persistence length [<150 base pairs (bp)], but recent studies addressing this have yielded contradictory results. We developed a fluorescence-based, protein-free assay for studying the cyclization of single DNA molecules in real time. The assay samples the equilibrium population of a sharply bent, transient species that is entirely suppressed in single-molecule mechanical measurements and is biologically more relevant than the annealed species sampled in the traditional ligase-based assay. The looping rate has a weak length dependence between 67 and 106 bp that cannot be described by the worm-like chain model. Many biologically important protein-DNA interactions that involve looping and bending of DNA below 100 bp likely use this intrinsic bendability of DNA.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                February 2013
                3 January 2013
                3 January 2013
                : 41
                : 4
                : 2437-2454
                Affiliations
                1Department of Immunobiology, Yale University School of Medicine, 300 Cedar St., New Haven, CT 06511, USA, 2Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania, 3Horia Hulubei National Institute for Physics and Nuclear Engineering, 077125 Bucharest-Magurele, Romania, 4Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 300 Cedar St., New Haven, CT 06511, USA, 5Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania and 6Howard Hughes Medical Institute, 4000 Jones Bridge Road Chevy Chase, MD 20815, USA
                Author notes
                *To whom correspondence should be addressed. Tel: +011 1 203 737 2255; Fax: +011 1 203 785 3855; Email: david.schatz@ 123456yale.edu
                Article
                gks1294
                10.1093/nar/gks1294
                3575807
                23293004
                231806ad-ae69-45e3-ae23-b7846e8dde8c
                © The Author(s) 2013. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com.

                History
                : 5 September 2012
                : 9 November 2012
                : 12 November 2012
                Page count
                Pages: 18
                Categories
                Nucleic Acid Enzymes

                Genetics
                Genetics

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content39

                Cited by12

                Most referenced authors828